0++0
Tabments -
Queries,
Calculations,
Statistics
and
Visualization

Klaus Benecke
(07.08.2025)
Copyright © 2025 Klaus Benecke. All rights reserved.

Foreword

What does it mean that o++o (ottoPS) is probably the simplest programming language?

It does not mean that o++o consists of very simple concepts. It does mean, however, that its
application is relatively simple. o++0 is not simple, but solving problems is easier than with other
programming languages of equal expressiveness. o++0 behaves like a natural language. English or
German is not easy to learn either. However, natural language can be used - to a certain extent -
even by children under the age of four.

We are convinced that the basic idea behind our best operation (stroke list operation) is easier to
understand than the multiplication algorithm of decimal numbers. In our opinion, the concepts of o+
+o0 are relatively difficult to formalize, but they can often be described by simple algorithms that
almost every user (= OttoNormalVerbraucher) can use in the future.

Is o++0 a programming language?

o++0PS is designed as an end-user language, but not for programming complex database systems or
compilers. It was developed to support people in solving their mathematical everyday requirements.
Daily challenges are first of all (ad hoc) queries to tables (databases), documents or collections of
tables and documents. It also includes financial calculations or in other daily context: determination
of function values, determination of zeros or extrema of functions and solving a system of equations
(calculation with matrices). In addition, o++0 should be able to generate and manipulate images and
visualize tables and documents in the form of diagrams. The most important innovative ideas of o++o
compared to other approaches are connected with repeating groups. This means that a given object
may contain not only null or one value for an attribute, but also multiple values. For such structures,
known for more than 50 years in computer science, o++o provides new, powerful and easy to use
operations.

This book contains a variety of sample queries to illustrate the basic concepts.

Table of content

A O WN P

7.10

10
10.1
10.2
10.3
10.4
10.5
11
11.1
11.2
12
13
14

Calculations and spreadsheet applications With 0++0.........ccccoviiiiiiiiiiiiiiiee e, 13
A SaVINGSs DanK @CCOUNT.......oiiii ittt e e e e etre e e e e e e e e aaeaaeaeeeeeeeeeeeeeeees 24
Table Recursion - Exponential GroWth...........cccuiiiiiiiiiiiiiec e 28
[L= Co TN o u e T =41 o o1 o] O RPTTT 38
(o ol (o g T a Vo [<T ¢ T =T USRS 40
SEFOKE LiSTS. e ureiiutieetie ittt ettt ettt e s bt e st e s he e e b e b e s sar e e sane e e 40
The conversion operations stroke list to zahl and vice versa.........cccccovveiiveeeiincciieee s, 41
Bl ST o J=T = Yu Lo T I PPN 41
0++0 Programs t0 KiNdergart@Nn?........cooi i a e e e 42
O++0 IN SCROOI LESSONS.iiiiiiiie ettt ettt ettt ettt e e st e e sbe e e s abeeesanseessareeessssannnnnes 45
Multiplication, SChool and DigitizatioN.....cuueeeieecciieiee et e e e e e e e e e e e e e s 52
Who can multiply in their REAA? e e e e e 52
Who can MUIEIPIY iN WETINE?..eiiiiieieee et s s e e e e e e e e e e aaaeas 53
(Y sYolor=YaWelgol={x=Yan al=N aa 01 1l o] foF=1u (o] o PR 53
Stroke list multiplication versus decimal multiplication.......cccueeeeiiicciieee e, 55
How o++0 could enrich the school curriculum?......cooceeiiiiei e 55
Can the stroke list operation be taught as early as third grade?.....cccccceeeeeeeeeeeeeeeeeeeee e, 57
Does the school calculator from Texas-Instruments calculate Wrong?.......eeeeecvvveeeeeiccieennnn. 59
[S EXCEL MOTally WOTIN QUL 2 ciiiiiiiiee ettt ettt ee e sttt e e st e e e s sseveeeeesssabeaeeeesssnseneeeesennnes 62
OFH0 PrOOTS. ettt et e b e sttt et nae e 63
An example of deep digitiZatioN....ccvuiiee i e 64
Schemes and Structured Tables. ... i e s e e e e e 65
Tabment types (TTs) and structured dOCUMENTS.....uuuiiieieiciiieee e eecittee e e et e e e e erre e e e e e areee s 69
F T A S AV =Y €= o LY TP PUR Nt 72
Y= =T o T YA =1 TS EEPRR 73
(61 Tol] o n To T E 1) TR 78
T Vot U] aT= N =11 o) PSPPIt 80
JOINING DY NESTEA QUEIIES. 1ttiiiiiiitiiiee ittt e e s sebere e e e s s tee e e e s ssbbeeeeesssnreaeeeeenees 89
A user-friendly “JOIN” (EXE XE2).iiiciiee et e et e e e e e e e e e e e e e e e e e e enaraeeaaaas 92
Special ReStrUCTUNNG OPEratioNS. v iieeeeeeeciiteeeeeeettree e e eetrreeeessttreeeeesessbeseeessessssaesseseeenes 94
The Bill of Material Problem (BOM) (ONIS).....ccoiciiiiiiiieecieieciieeeesteeestee e sire e e e e e e e eeeeneeees 94
Transposing Matrices and structured Tables.........ccocciiiiii i 95
Some operations for text processing with 0++0 (+ ~+ CUt SAtZl).veevveeiiieiie e, 101
Format with o++0 ('3 '4 norm3e Norm3mM Mant MNd)......ccccciieee e 103
UL g =Te [[T = =0 LSS 105

15 VU]l o] L=l = T=d T g RNt 118

16 [ag Tl 1=t o =] =Y nl o] DO RO PP PP PP PRUR PPN 121
Appendix A: List of operations and Keywords Of 0F+0.....uueeiiiiiieiei e 124
AppendiX B: List Of 0++0 COIOr NAMIES..ciiiiiiiiiiie ettt ettt ettt e e s e e e s sibe e s sbbe e e sabbbbaaaeeeeeens 141

List of programs and queries

"Code" @teXt.uuuiiiiiiiiiiieee e 101
X 101
A problem with hierarchical paths................ 68
asimple bill.....coeeeie 78
Addition....c.veeeeiiiiee 13
Addition of rational numbers..........c............ 13
All names, born in Saxony........cccceeevvvvvvvnnnnns 66
An o++o0-program, for which EXCEL needs
more than 6 worksheets.........c...ooeuuuneee. 62
APO3 AP0t 103
APProxXimate ZeroS.......uueeeeeeeeeeeeerrnnrerennneeennns 18
Area of Circle. v, 45
Area UNder @ CUMNVE.....cueevrveeeerieeeeirreeeeeeeeens 18
area under a non-continuous function......... 19
Area without integral calculus...................... 57
Assignment and gib.........ccccce i, 79
Assignment with redundancy........cccccceee.... 89
average (weighted)......ccccceeevieeeennien, 21
Average of several marks..........cccccevveeeeeeennns 14
BMIL ..o 80
Bottle with cork.......ccouveeveiiiiiiiiiiiiiiiieeece, 22
Chart. e, 107
Chess board problem...........cccooeeiciiiiieeneennnns 33
circumference and area of circles................. 20
circumference and area of rectangles........... 20
circumference of several circles.................... 20
COlOrs iN IMAgE...ccuvveeeeiriiiiee e, 122
column chart with signatures.........c.c........ 105
combine fields who are not on a hierarchical
PAtN..eeiiieie e 88
Comma is an ordinary operation.................. 14
computations with assignment.................... 78
computations without assignment............... 78
Compute pi by zeros......ccocceveeeeeeeeeeeeennnnnnn, 45
Concatenate 2 Words.......cccevvvveennievineeeeeeenn. 38
Concatenation of words and text................ 101
Contrast total revenues and expenditures....24
Count animal species with strokes................ 57
Count at serveral levels.......ccccceeeveveeeinnennnn. 66
Count at several target levels................u..... 67
COUNT CarS.cciiiiiiieeiieie e 43
Count different kinds of animails................... 42
Count of binary numbers....................... 14
Count struples......ccoeeeeeeccciirereee e 65
Counting in structured tables..........cccccvvveeees 58
diagram by click.........oooeviiiiiiiiir 15
diagram with signatures...........ceeevviveeeennns 15
Difference or List......ccccceveuvveeieiiiiiniieeesiicnnn 13
Distribute 15 apples among 4 children......... 43
distribution with cut.......ccccoviiiiiinnnnl, 88
DIVISION...ceeieeeeeer e 13

Division with improved readability............... 13
Division with rounding........ccccccccvvviiiieenennnnn. 13
DIVISIONS....viiiiiiiiiiieeieee e 43
divrest generates a pair of numbers............. 15
divrest value table........cccoveeeiiiiiiieni e, 19
Each of 4 children gets 3 apples.....ccccceeen...n. 42
Edge of a cube.....ccviveciiiiiiiiieeee e, 14
ext and gib....ccoveeiiii e, 93
ext, giband sel.....cccoveeiiiiiiiiiee 92
ext, seland gib......ccooveeiiiiiiiii 93
EXE2. it 92
ext2 seland gib......ccooveeeiiiiiiieie 93
Fibonacci-numbers.........ccccceevvciiieeeeciciieeennn, 46
first and last transaction............ccccvvvvvvvvnnnnne. 24
four plus four......ccoiveciiieiieeee, 41
four times 3. ..., 50
Functions by column charts....................... 112
functions with image.........ccccccvvvvniiennnnnnnnn. 122
GDP 1988 10 2014......ueeeecieeeeieeecivireeeeee e 35
GDP 1992 10 2014.....uveeeeieeeeieeeeitreeeee e 34
Generate 2 times 10 pointS......cccceeeeeveeeenee. 121
Generate a bikini........ccccoeiiiiiiiiiiieeeeeee 123
Generate the German flag........cccccceeeeees 122
grouping with aggregation............................ 87
how many turnovers?.........cccceveeeeeveviniiieenns 24
how much got Ms. Heyer per year and month?
.. 25
how much money was transferred from the
1ol olo 1U] o | A 24
how much money was transferred to the
ACCOUNT?.ceiiiiiiiiiee e 24
How much Ms. Heyer got.......ccccceeeeeeeeeeennnn. 24
How old is Claudia?........ccccceevviiieeeeeicciiennn, 44
if 79
Illustration of collection symboils.................. 80
[T == T PO PPRRRTRt 121
Income and eXPENSES.........uuvvvvrrrmnnnnnnnnnninnnns 25
Income and expenses monthwise................. 26
IN-relation. ... 66
Interests of 1 % and 9 %......cccceeeeeeecvveeeeennnnn. 29
Interests of 1 % und 9 % within 200 years....31
Interger zeros of a polynomial..................... 45
Intersection by gib......cccooviviiiiiiiinii 86
Introduction of two column names.............. 14
1S 77
line chart....coooovieeee e, 26, 28
List of 2 Words........uveeeeeeeeeeiiieiieececcn, 38
List of stroke lists.........cuvveeeeeeiiiiinieniieiiinnnnn. 41
list times number........ccovvveeveiiiiiiin, 54
Local Maximumi.....ccoeccuveeeeeeiiiieee e 47

Local minimum of a polynomial.................... 57

MANT. ..t e e e 104
Matrix multiplication in o++0.....ccccceeeeeee. 54
Matrix-multiplication with o++o function.....55
Maximum of numbers..........ccccviiiiiiiiiinnnn. 14
minimum (local).......cccovieeiiiiiiiieeececccn, 18
multiple charts.......ccccovviiieeeeeeiiin, 118
multiplying a table with a number................ 20
nested join with depth three........................ 91
non-hierarchical path with gib..................... 88
NOrM3M NOIMM3E...uciiieiiieiieeieiiiiiee e 103
number to stroke list........cccceviviieeriiiicinenn.n. 41
o++0 program on the blackboard................. 56
o++0 proof (preparation)......c.ccccceeeeeeeeeennnnn. 63
o++0 proof for mad.......ccceeeiiieeiiiiiiieeeee, 64
Omit rows and columns.........cccceevveeviireeennn. 88
Output tWo WOrds.........ceeeeeeiciiieeeeeiiiiieeeeen, 38
PACK data......cceeciiieeeeiie 82
Pair of 2 independent terms............ccceec....... 14
Pair of WOrdS....coccuvevinieiinieeerieec e 38
Pascal triangle.........ccccvveeeeieieiiieeeeccca, 47
PIUS PEIrCENT...cci e 78
prime numbers up to 70.......ccccceeieeeeeeeeeennnn.. 19
Product of 5 numbers.......c.ccecviiveeieeeeiiiinnns 56
Product of nubers from 1 to 100................... 14
restructuring with aggregation..................... 87
reverse a hierarchy........cocoocvccviieenieieeeincennn, 83
selafter gib...u e 71
SElEWICE. .eiiiii i, 73
Sel tWO tiMES...uviiiiiiiiieei e, 74
sel-and sel....coccvvieiiiiici e, 77
select and SOrt.....cccveeeeiiviciiiee e, 67
selection and assignment..........cccccvveeeiinnnnens 79
selection assignment and gib...........cccceeeeen. 79
selection by 2., 83
selection by content and position................. 76
selection by position......cccceecviieeeeiiiiinnn, 71
Selection by poSitioN.......uvvveveeeeeieeeeeeiieeeennnn, 49
selection by word in 2 files........cccovveeeeiinnnns 76
selection by words.......cccceveeieeiieeeii, 76
selection in nUMbers.......coccvvevvveeiiiieeennns 102
selection in top level.......ccccooveciveeeeinnl, 75
selection with aggregation.............ccovvveeeeens 77
selection with gib........ooccvveiiiiiiiii 82
selection With set......cocceevvivieiinciee i, 74
selection with two gib clauses........c..ecc....... 82
selections by content........c.ccoeccieeeeeiennnnnnn. 74
selections on top level......ccccccoeoeveeiiiineinnnn, 75
selections on two levels.........ccccceeeeeiiieeieennnn. 76
Set difference.....ccceeecveeeiccee e 51
set difference by selection.........cccccceeeeeeeee. 87
set difference with nested query.................. 87

Set Of tWO WOrdS......coovvvveeeiiiiiiieeieeeee e 39

Sine function and its derivation.................... 47

Sine of 30 degrees........cccovveeeeeeccieeeeeeeereenn, 13
SiNE Of Pi i 2ieiieeeeiee e 13
Six years old children wanted....................... 44
Sortachart......ccccoieiiiiiiciii 106
Sort by 2 fields in one level.........ccuvveeeeinnnns 81
Sort downwards.........ccceeevecveeeeeeiniiieeee e e, 81
Sort faculties by Budget and additionally by
0o [or=] oF- [o] 1 AV PR 81
Sort two levels.....covvcieeeiiiiiiii 81
Stroke list multiplication in o++o.................. 53
Stroke list multiplication shorter................... 53
Stroke list to number......cccccoeeeeii 41
Structured bar chart........ccooceeeiiciiiieeeii, 108
structured chart........cccoveeeeiicciiiceeceeeeeeees 111
Structured chart for elections..............uuuee. 114
Structured chart of BMI........ccccevvvvvvvvvinnnnns 110
structured diagram.......cccvveeeeeeieeeniennnnn, 16
Structured diagram with user defined colors
.. 115,116
Structured join with nested query................ 90
structured left outer join..........ccoccvveeeeennnee. 90
Subtraction........coooocccii 41
Sum of 4 nUMbErs.......coeeeveciiieieeeieee e, 14
Sum of first 100 numbers.........ccccceeeeeennneenen. 56
Sum of numbers of 1 to 100...........c.ceeeeenneeee 14
table for function graph.......ccccceeeiiiiinnnnnnnnnn. 18
table of values.......couveveeeeeeeii, 17
Table plus percent number.........cccccceennnen. 78
tag with gib......oooooi e, 84
ten tiMeS teN....uueiiiiiieeeieeeeee e, 41
TEXE i 38
three plus four....ovcciviiie e, 50
to the power of......oeeveiiicciiiiiiiiei, 13
total price of a bill....ccoeveceriiieeiiiieeeeeis 21
total price of a simple bill...........ccccovvveernnne. 20
transpose, metal.......cccovieeiiiiiiiiinn e, 99
transpose, metapriMm.....cccceeveeveeereeinreeeinnneens 99
two nested jOiNs......cccceeeiieciiieee e, 91
two selections at top level...........ccevvvvennneee. 75
Two words one column.........ccceeeevvveeeeeiinnns 38
Two words to meta and primary data........... 39
two words two columns.........ccceeeecvveeeeeeennns 38
Type of the more general or first input value is
MaINtaind.....ccccovvviiiiiiie 13
Type of the more general or first input value
(=10 0 F= Y1 TN 13
union by gib.....ccocoe 85
Weighted averages.....cccccceeeviiiiiieiiiiieeeneeeees 49
woman weighs 40 kg plus half her weight....22
Young children wanted...........ccccceeerrrrrnnnnnnnn. 44
Zero of sine function...........ccccociiiien s 45

Introduction

We summarize the main design principles and requirements for an end-user computer language or
data model with corresponding operations:

It should be based on easily applicable concepts with a simple syntax.

It should be expressive and powerful.

It should be expandable with new operations.

It should have precise semantics based on algorithms.

It should allow queries on tables (databases) and documents.

It should allow queries over document collections (IR systems) and entire databases.

It should allow at user level computations by naive (brute force) algorithms.

It should also be usable for people with little interest in mathematics and computer science

(programming by gut feeling).

9. Itis intended to provide simple as well as more sophisticated concepts for broad classes of
applications, suitable even for users with a keen interest in mathematics and computer
science.

10. It should solidly integrate single data and mass data operations.

11. The result of a mass data operation should be as small as possible.

12. It would be nice if it could use graphical features based on structured tables.

13. It should be efficiently implementable.

14. At least parts of the language should be able to be optimized.

9 v B> Y P

o++0 was designed and developed with these principles in mind. It started as a database language for
tables with repeating groups. A record with repeating groups may contain not only one value at each
position, but also several (sub tuples of) values. For example, a student record may contain a name
and a scholarship, but it may also contain multiple hobbies or multiple (SUBJECT,MARK) pairs.
Similarly, a machine part may contain a number and a color, and to that several subparts or several
layers or edges. Such sub-tuples may have sub-tuples again. These repeating groups have existed in
computer science for more than 60 years. They are typical for hierarchical systems (IMS, ...), but
were later discredited by emerging relational systems. Even today they are widely used in XML, JSON
and NoSQL systems. However, in our opinion, there is no widely accepted computer language
capable of adequately handling these richer structures. With the advent of XML, we have been able
to generalize our operations to the new capabilities of arbitrary tagging and the alternate operator
(]). Therefore, we are able to manipulate not only tables, but also documents. We have introduced
the name tabment. A tabment can be understood as an abstract (syntax-independent) specification
of an XML document. Step by step we improved our language o++o0. We introduced binary search
trees in tabments. Thus, we have achieved great efficiency gains for several operations.

Some indices can also be considered as tabments.

Our language o++0 has been implemented in OCaml. Some basic keywords of o++o are German or
Spanish ('gib' instead of SELECT, ‘si’ instead of true, ...) because they are shorter than the
corresponding English words, but most keywords are English. This seems to be important because
smartphones have only a small screen.

Today, many people also believe that no one would buy a computer program that might take a few
hours or days to learn.

We put forward the following arguments against it:

0. Almost all people in the world had to learn for several years to understand the single data
operations addition, multiplication, division and difference for each number range in school.

Are mass data operations like selections, calculations, restructuring, sorting tables, ... not just
as important?

1. A good programming language allows many problems to be formulated more briefly and
precisely with fewer misunderstandings than any natural language.

2. There is no need to explain the advantages of someone who has a driver's license or even a
car. If he can even program solutions to problems with the computer himself, this increases
the quality of computer use, because he can also interpret the results better. He does not
need a computer scientist (chauffeur). Thus, there are fewer communication problems and
he saves the cost of the computer scientist and the time for communication.

3. If the individual can make precise queries, he has much more compact query results and
saves a lot of manual search effort. This also reduces the workload and improves quality.

What are the more specific design principles of o++0?
1. important things first

1.1 Sorting by the first attributes of a collection
gib DEPARTMENT, CHIEF, (NAME, LOCATION m) m

Here is described a structured table, which contains for each department also a
corresponding group of employees. Sets (m) (and multi sets) are always sorted by the
first column names. l.e. the outer set is sorted by DEPARTMENT and the inner set by
NAME and then by LOCATION, because the NAME is not always a key in a
department.

1.2 First written - first calculated:
2+3*4 gives 20

Here, a rectangle has one longer side, which consists of two sections 2 and 3 meters
long. The other side is 4 meters long. The area gives 20.

3*4+2 gives 14

If | have two rectangles, one with side lengths 3 and 4 and one with area 2, | can first
calculate 3*4 and then add 2 to get the area.

Please, do not overestimate these two examples. This is not new, because you get
the same results with the most pocket calculators and the calculator of WINDOWS in
normal mode. Also, the computer language SMALLTALK computes from left to right.
Further, the old Greek scientists and each child in the first and second grade ,...
compute in this way. Additionally, very few people know all priority rules.

1.3 TT-Invariance (TT=TabmentType)

For many operations such as addition or multiplication, the type of the result is the
same as the type of the first input value.

<TABH!
SUBJECT, MARK
Math 12
Phy 2 3
| TABH>
*15/6
Here a whole table in horizontal tab format is multiplied by a number. That is, each
number of the table is multiplied by 15/6 and the words remain unchanged. This
results again is a table of the type SUBJECT,MARKI m. We see again, the first input
value is more important than the second.
1.4 Exponent representation of numbers

T m
4 1
524

o++0 additionally, a representation allows, where the more important part - the
exponent - precedes the mantissa of a number. The exponent says more about the
size of the number than the mantissa:
6m12.345'678 (12 million 345 thousand ...)
9m123.456 (123 billion 456 million ...)
2. pragmatics and methodology first
We can also allow multi-line semantics for a single term. Then we could replace
(23+45+67) * (1111+2222+3333+4444)
through
23+45+67
&
1111+2222+3333+4444
This can be typed faster and is also clearer by dedicating a line to each pair of parentheses. In
o++0 this notation is further shortened to
23+45+67
*1111+2222+3333+4444
This is not only done for methodological reasons (better readability), but for pragmatism.
This notation does not waste the additional middle line. Compared to the first notation, you
have to use a (larger) return key only once instead of 4 brackets. Further, each line gives a
result.
3. short catchy keywords
Short programs require short keywords and short operation symbols or names. However, if
the number of these symbols becomes too large, one must also allow full names for
designations so that the user can remember them. For o++o holds, the more important a
symbol is, i.e. the more frequently it is used, the shorter it is. This rule can be better
implemented by allowing non-English keys as well.
Very short are +, * ,... | (list), m This is certainly all right. We have also replaced many
English terms by more memorable and shorter symbols:
sum: ++
product: **
average: ++:
count: ++1

Where we have found very short memorable known words in a language other than English,
we substitute English terms with shorter ones from other languages if those words are
known to many people:
true: si (Spanish ltalian)
false: no
From the translation of SELECT-FROM-WHERE (gib-aus-mit) are the German words:
gib (select) for "give me"
and
aus (from)

4. programs are processed from top to bottom and from left to right.
Programs with loops or general recursion are expressive and powerful, but often difficult to
read and understand. Sequential programs are expected to be not so expressive. o++o has
been developed to prove the opposite, too. This requires powerful and expressive
operations.

Readability of programs and tabments is an important problem.

o++0 has been taken this into account as follows:
1. Programs can often be written short.

10

2. Numbers can also be displayed in Swiss style (e.g.: 12'345'678)
3. Lines indented by more than 4 spaces logically belong to the previous line. E.G.:
my_marks. tab
gib AVG, (SUBJECT,AVG m)
AVG:=MARK! ++: # this 1line belongs from the logical
point of view still to the previous line
rnd 1

4, A structured table with the scheme
DEPARTMENT, CHIEF, (NAME, SALARY m) m

contains each department and boss only once. This not only reduces redundancy, but also
improves readability compared to flat tables of this type.
In the chapters it is shown, how general and simple the query possibilities of o++o are. Chapter 1
introduces some basic functions of our "pocket calculator". All examples there do not require any
stored tables or documents. This does not mean that our o++o programs cannot work with files.
Tables and documents can also be stored.

First of all, the user must understand what a schema is and what are the tables or documents that
belong to this schema. Then it will not be too difficult to grasp the query examples for selection,
calculation and restructuring of the first chapters. All operations allow a compact and readable
formulation of (complex) queries. They apply to nested lists or sets, and they are new to the
database world. Calculations can often be understood as hierarchical "map" functions, because
operations are often applied to each of the input values. Restructuring with the gib clause is very
expressive, as it is combined with sort (m, b), duplicate elimination (m), aggregation (++, min, max, +
+1, ++:, or2, &&, **, variance).

We know of no other restructuring operation in a commercial product that allows to transform a
given hierarchy only by specifying a schema or TT (Tabment Type) of the desired structure. Although
the operations in the examples are only applied sequentially, they cover a wide range of applications.

Section 10.4 introduces a "natural" join called ext operation and its un-nested and nested uses. It
becomes clear that we do not need the Cartesian product and even the ordinary flat relational join. A
simplified notion of recursion is introduced in Chapter 3. With this end-user recursion, appropriate
gueries can be realized with minimal learning effort. After showing in Chapter 4 that printing two
words is not just a syntactic issue, Chapter 6 tries to make clear that o++o is useful for all subjects in
school, but especially for mathematics and computer science. It will be made clear that even 9th or
10th grade students can solve problems that are applications of differential and integral calculus. In
addition, it is argued that the ordinary division algorithm could be eliminated from the mathematics
curriculum. It requires neither Cartesian product nor (hidden) join conditions.

Chapter 17 contains some queries where the result can be interpreted as an image. Roughly
speaking, each result table contains the coordinates of points possibly combined with a color value. It
is also shown that it is easier to create structured diagrams based on structured tables.

The most important operations of the data model are described in more detail in chapter 10. Section
10.3 contains the description of the restructuring operation, 10.2 the assignment operation and 10.1
the selection.

Acknowledgements:

I would like to thank the following computer scientists for their valuable contributions to our system
o++0 and previous systems:

Wolfgang Reichstein for the first one-step implementation of the restructuring operation in C for
HSQ files,

11

Dmitri Shamshurko for the first implementation of the first core of the "gib-aus-mit" construct in a
functional style (Caml Light),

Martin Schnabel for the conception and implementation of subroutines and other features,

Andreas Hauptmann for improving many concepts in design and efficiency, especially for query
optimization concepts.

Further thanks go to Stephan Schenkl and Mirko Otto for supporting the o++o project.

12

1 Calculations and spreadsheet applications with o++0

We first present some numerical calculations.

Program 1.1: Addition;

Result (type: the more general type of both)

1+ 4.56

Program 1.2: Division

Result

1:7

Program 1.3: Division with improved readability

Result

1:7 '3

Program 1.4: Division with rounding

Result

1:7 rnd 3

Program 1.5: Exponentiation

Result

3220 '3 # '3 is an idea from Swiss

(il

#is the comment character. Comments can be used to explain programs.

Program 1.6: Addition of rational numbers Result
3/4 + 1/3

Program 1.7: Type of the first input value is Result
maintained, if the types do not generalize each

other

3/4 + 0.3

Program 1.8: Type of the first input value is Result

maintained, if the types do not generalize each

other

0.3+3/4

Program 1.9: Difference or list

Result

3 - 2 # Note that "3 -2" is a
List of two numbers

Program 1.10: Sine of pi: 2

Result

pi : 2 sin

Program 1.11: Sine of 30 degrees

Result

30:180*pi sin

Il

Program 1.12: How many 10-digit binary

| Result

w

numbers are there?

2 ~ 10 # base:2 exponent: 10 1024

Program 1.13: Calculate the edge length of a Result

cube with volume 2

2 ~1/3 1.25992104989
or

Program 1.14: Calculate the edge length of a Result

cube with volume 2 using ordinary division

operation

2 N (1:3) 1.25992104989

Program 1.15: Sum of 4 numbers Result

3.21 4.56 6.88 9.32 ++ 23.97

Program 1.16: Sum of numbers from 1 to 100 Result

1 .. 100 ++ 5050

Program 1.17: Product of the Result

numbers from 10 to 40

10 .. 40 **

2248443792019118536005322061276774400000000

You can see from the result that you can process arbitrarily large integers with o++o.

stronger than ,

Program 1.18: Maximum of numbers Result

1/3 2/7 max 1/3

Program 1.19: Average of several marks Result

132134 ++: 2.33333333333
Program 1.20: Introduction of two column names Result

(Output values of two terms simultaneously)

X:=2 ~ 10 # := : assignment X, Y

Y:=X : 10 1024 102.4
Program 1.21: a pair of two independent terms | Result

2 sqrt; 3 sqrt # ; separates PZAHL , PZAHL

1.41421356237 1.73205080757

There are few commas in primary data of tables. This would destroy the readability. Therefore, we
do not find commas in .tab files, for example, even if pairs or tuples are represented. However,

pairing is represented in the metadata (table head
PZAHL is a number with a point.

ers) of the tables to prevent misunderstandings.

acts both via
"2 sqrt" as well

Program 1.22: Comma is an ordinary operation: | Result
Calculation from left to right
2 sqrt,3 sqrt # the last sqrt PZAHL, PZAHL

1.189207115 1.73205080757

14

| # as over 3]

Program 1.23: divrest generates a pair of Result
numbers
DIV,REST:=13 divrest 5

Program 1.24: create a simple diagram with one click
13251 # List of numbers
Result: Diagram (columns)

ZAHL

marksl.tab

The above table represents a list of (SUBJECT,MARK) pairs. It can be created with any text editor or
typed into the output field of the o++0 interface. 1 stands for list.

Program 1.25: a simple bar chart with signatures
marksl.tab
Result (struc.diagram - bar)

15

SUBJECTMARK |

2
18
16
14
12

1
08
06
04
02

0 . ! !

Mathematics Physics English German
SUBJECT

MARK

It is also possible to enter the following line into the program field of the Otto interface.
SUBJECT,MARK 1l:=Mathematics Physics English German posjoin 1 2 1 2

By the operation ,, the both given lists are elementwise connected by comma. The resulting list
consists of 4 (WORT,ZAHL) pairs, where the first column is renamed to SUBJECT and the second to
MARK.

The basic data of the following query can be generated by the following small structured table. Here
1 stands for list. It needs the ending “.tabh”, because the marks are arranged horizontally. Lists were
invented in Venice (Lista). The single entries (=elements = rows) of the list were arranged one below
the other. The subjects are also arranged vertically in noten2.tabh. Simple lists were already
arranged horizontally thousands of years ago. A sentence is a list of words, which were essentially
arranged horizontally. Since this saves a lot of screen space and paper, simple (single-column) lists in
o++0 can also be arranged horizontally. This is possible because the list is understood abstractly. This
allows o++o to understand JSON lists, for example, even though the list elements are not simply
separated by spaces. In questions of the representation of the elements, sets and multisets are equal
to lists. However, different parentheses are used.

marks2.tabh

This table can also be generated by the following program line with set brackets { }:
SUBJECT,MARK1 m:={Mathematics,[2 1 3] Physics,[2 2 3] English,[1 4]}

16

Program 1.26: a structured diagram

marks2.tabh

gib AVG, (SUBJECT,AVG,MARK1 m)
AVG:=MARK! ++:

Result (diagram columns)

AVG,(SUBJECT,AVG,MARKI m)

35

AVG AVG MARK

-

N v
N \©
) A

Result (tabh output)

The following are examples of a curve discussion using a parabola as an example.

Program 1.27: Calculation of a small table of Result (tab)
values of the quadratic function with
coefficients 1 -8 13 (x> - 8 x +13)
Xl:= -2 .. 10

Y := X poly [1 -8 13]

17

Program 1.28: Expanding the value table so that | Result (image)
a function graph can be seen.

Draw the graph of the parabola

(quadratic function) with the x-axis and the
function y=x in the interval [-2 10].

Xl:= -2 .. 10! 0.01

Y := X poly 1 -8 13 H

LINE:= X .

Yo:= 0*X)
}
L
1
|
L
I

—
-
Lo
_—

-— —

Program 1.29: Approximate determination of the Result
(local) minimum of the parabola

-2 ... 1010.0001 poly [1 -8 13] min -3

Program 1.30: Approximate determination of the Result (tab)
two zeros

Xl:= -2 ... 10!0.0001 X, Y1

Y := X poly [1 -8 13] 2.2679000 ©0.0001704
sel Y succ * Y <= 0 # succ: successor | 5.7320000 -0.0001760

rnd 7

Program 1.31: Determining the Result (image) (without 2 last program lines)
area under a (composite) function

X1: -2 ... 10! 0.0001 Result (tab)

Y := (X poly [1 -8 13],0) min -6.92820323316
RECTANGLE := Y*0.0001

++ RECTANGLE

18

If we omit the last two program lines in the following program, the function can be visualized by
clicking on image:

Program 1.32: Determination of the area under a Result (image)
non-continuous function

Xl:= -2 ... 10! 0.0001

Y := X poly (1 -8 13),(X rnd ©) min
RECTANGLE :=Y*0.0001

++ RECTANGLE

Program 1.33: Using the divrest function to output | Result (tab)
number pairs
X1l:=1 ..10
DIV,REST:=X divrest 3

Program 1.34: Determination of all prime numbers up to 70
Xl:=2 .. 35

Yl:=2 .. 9 at X

PRODUCT : = X*Y

sel PRODUCT <= 70 # sel : with

gib PRODUCTm

PRIM1:= 2 ..70

sel- PRIM in PRODUCTm # sel-: without

gib PRIM1

Result (tabh output):

| Program 1.35: Calculate the circumference of several circles, whose radii are given. The results are |

19

to be rounded to 2 digits after the point.
456 2 3.7 9.77 *pi*2 rnd 2

Result (tabh)

You can see that this program can be written in one line.

Program 1.36: Calculating circumference and area | Result (tab)
of several circles, whose radii are given
Rl:=456 2 3.7 9.77

CIRCUM :=R*pi*2

AREA:=R*R*pi

rnd 1

By Rl:=the name R (called "tag") is assigned to each element of the given list.

An assignment (":=") adds a new column to the specified table. In the above program, the columns
CIRCUM and AREA are added one after the other, resulting in a table of type R,CIRCUM,AREA |I. |
stands for list. Unfortunately, this can easily be confused with the one.

Program 1.37: Calculating perimeter and area of Result (tab)
multiple rectangles
<TAB!

A, B 1
1.23 5.67
7.65 4.32
9.87 6.54
ITAB>
CIRCUM:=A+B*2
AREA:=A*B

The TAB brackets ("<TAB!", "ITAB>") are needed only in the program part of the system. In a file the
system recognizes the type by the ending ".tab". In the TAB representation the values must be

aligned to the left side of the associated column names.

Program 1.38: Total price of a simple invoice Result
<TAB!
ARTICLE, PRICE 1
Beer 0.61
Lemonade 0.23
Steak 2.40
ITAB>
++
Here we simply sum over the numbers in the given table (a list of pairs). The ARTICLE values are
words and therefore have no effect on the result. Now we replace ++ with +% 10. This creates a table
with 2 columns and three rows (records, tuples). Each number now still contains 10% tip:

Program 1.39: Multiplying a table by a number Result
<TAB!

ARTICLE, PRICE 1

Beer 0.61

Lemonade 0.23

20

Steak 2.40
ITAB>
+% 10

Then you can add again with ++ to get the total (3.564).

Program 1.40: Find the total price of a more Result
complicated calculation using a simple table

<TAB! 14.56
ARTICLE, PRICE, CNT 1

Beer 0.61 7

Lemonade ©.23 3
Steak 2.40 4
ITAB>

POSPRICE:= PRICE*CNT
gib POSPRICE1L

++

As a result of the assignment, the specified table is extended by a new column with the column name
POSPRICE, where each of the three PRICE values is multiplied by the associated CNT value. To
determine the total price the ++ operation has to be applied only to the POSPRICE-values. Otherwise,
the sum of all nine numbers in the table above would be formed.

The first input value of an operation, which is at the beginning of a program line, is always the result
of the previous program line.

The ":=" sign of the assignment is to be distinguished from the equal sign =. For the formulation of
conditions the equal sign, as well as <, >, <=, "in" etc. is needed. Conditions are used for selection
(filtering of (complex) rows of structured tables).

For example, add a condition

sel ARTICLE = beer

or only

sel beer

then the final result is the total price for the seven beers. If you want to calculate only the price for
the other items instead, use

sel- ARTICLE = beer

or simply

sel- beer.

Column names (metadata) must always be written in upper case. The keywords (gib, sel-, sel , ...)
must always be written in lower case. If you write a word of the primary data always with upper and
lower case letters, the program becomes easier to read.

The reference to the aggregation (here ++) results from the header line of the desired table. TOTAL is
an aggregation per NAME. Sets (m, m-) are always sorted by the column names specified first.

Program 1.41: Find a weighted average for 3 Result (tabh)

students and the overall average

<TABH! TOTAL, (NAME, TOT, EXAM1,MARK1 1)
NAME, EXAM1,MARK1 1 1.66 Ernst 1.59 1 2 1231311
Ernst 12 1231311 Clara 1.8011 3

Clara 1 1 3 Sophia 1.60 1 3 1

Sophia 1 3 1

ITABH>

TOT:=EXAM1 ++: *0.6 +(MARK1 ++: *0.4)

21

TOTAL:=TOT1 ++:
rnd 2

sel WEIGHT:2+40=WEIGHT

Program 1.42: A woman weighs 40 kg plus half her | Result
weight. How much does she weigh?
WEIGHT1:= 40 .. 100 80

How much does the cork cost?

cents. The bottle is one euro more expensive than the cork.

Program 1.43: A bottle with a cork costs one euro and ten Result
cents. The bottle is one euro more expensive than the cork.

How much does the bottle cost?

BOTTLEL := 0 .. 110 BOTTLE
sel 110-BOTTLE=BOTTLE- 100 # = CORK 105
Program 1.44: A bottle with a cork costs one euro and ten Result

BOTTLEl:= © .. 110
CORK:= BOTTLE - 100
sel CORK+BOTTLE =

110

BOTTLE, CORK 1

105 5

The first assignment gives each of the numbers
from 0 to 110 the tag BOTTLE. This is best seen by
looking at the ment representation:

If we had written the assignment
BOTTLE:=0..110, the BOTTLE tag would appear
only once:

and ten cents. The bottle is one euro more
expensive than the cork. How much does the
bottle cost?

<TABM> <BOTTLE>
<BOTTLE>0</BOTTLE> 0
<BOTTLE>1</BOTTLE> 1
<BOTTLE>2</BOTTLE> 2
<BOTTLE>3</BOTTLE> 3
<BOTTLE>108</BOTTLE> 108
<BOTTLE>109</BOTTLE> 109
<BOTTLE>110</BOTTLE> 110

</TABM> </BO TTLE>

Program 1.45: A bottle with a cork costs one euro Result

BOTTLEl:= © ..110
CORK1 = BOTTLE - 100
CORK2 := 110 - BOTTLE

sel CORK1=CORK2

BOTTLE, CORK1, CORK2 1

105 5 5

This solution is advantageous from a methodical point of view, because the first 3 program lines can
be displayed by clicking on the image button. You can see that there are 2 straight lines whose
intersection is determined by the conditions. You can also click diagram/Balken to get the following
result, where it is visible that both bars are equal at 105. Here we had to add the program line:

BOTTLE::=BOTTLE wort

22

BOTTLE

BOTTLE,CORK1,CORK2 |

QCORNONPWN-OOENDUNRWN=O

Noa—S s

21

9
100 |

N g gy
000000000
QORNDUHA WN =

-100 -50

o [111[lFrrrI||||||||““ ““““ ‘ ‘ || ||

(4]
o

CORK1 CORK2

100

2 A savings bank account

The following requests refer to data records of the savings bank. Here the customer can download
his data as a csv file. csv files have a very simple structure. Since they contain a lot of quotation
marks, they are relatively difficult to read. The otto user does not need to familiarize himself with this
syntax. He can view them or parts of the file in the usual way as tab, hsq, ment, web or json files. We
consider a file turnover.csv, which contains transactions from 3 years.

Program 2.1: How many turnovers are there? Result
turnover.csv 162
++1

Program 2.2: Give the first columns of the first and last transaction!

turnover.csv
sel AMOUNT pos=1 or AMOUNT pos- =1

Result (tab output):

ORDERACCOUNT, POSTINGDATE, VALUEDATE, POSTINGTEXT, USAGE....

DE598105327206411 20.07.22 20.07.22 ONLINE REFERRAL ReNr2
DE598105327206411 13.05.20 13.05.20 ONLINE REFERRAL Wage

pos determines the position of a tuple. pos starts counting from the beginning with 1 and pos- from
the end. "or" is the logical or sign.

Program 2.3: How much money was transferred to | Result
the account?

turnover.csv 110'729.17
sel AMOUNT > ©
gib AMOUNT1

++

'3

Program 2.4: How much money was transferred Result
from the account?

turnover.csv

sel AMOUNT < © -94'713.65
gib AMOUNT1
'3
Program 2.5: Contrast total revenues and expenditures Result (tab)
turnover.csv INCOME , EXPENSES
gib INCOME, EXPENSES
INCOME := AMOUNT if AMOUNT > ©!@!++ 110°729.17 -94'713.65

EXPENSES:= AMOUNT if AMOUNT < ©@!0!++
'3

Program 2.6: How much was transferred | Result
to Ms. Heyer in total?

turnover.csv

sel Heyer -54'538.28

24

gib AMOUNTI
++
'3

Here the user must know his data. If there are two Heyer's, the above result is certainly not the
desired one. One could then add the first name:

sel Heyer Erika
or
sel Heyer & Erika

You can also use the account number, but then the program is not so well readable, because most
people cannot remember an account number or IBAN.

Program 2.7: How much was transferred to Result (tab)

Ms. Heyer in each year and month?

turnover.csv

sel Heyer

D,MONTH, YEAR : =VALUTADATUM zahltrip

gib YEAR,SUM, (MONTH,SUM m) m
SUM:=AMOUNT ! ++

'3

rnd 2

Program 2.8: Give a comparison of the income and expenses for each year!
turnover.csv
YEAR:=20 wort + (VALUTADATUM subtext 7!2)
gib YEAR,PLUS,MINU,SUM m
PLUS :=AMOUNT if AMOUNT>@!0!++
MINU:=AMOUNT if AMOUNT<@!@Q!++
SUM: =AMOUNT ! ++

'3

25

Result (tab output):

YEAR, PLUS , MINU , SUM m

2020 24'921. -23'257.11 1'663.89
2021 50'468.04 -34'274.22 16'193.82
2022 35'340.13 -37'182.32 -1'842.19

subtext needs 3 input values. Here VALUTADATUM is the first, the initial character number 7 the
second and the length of the desired string 2 the third. VALUTADATUM is here a word constructed in
German date notation, e.g.: 18.06.21. In the above example, however, the year is to be output with 4
digits. For this, the word "20" must be concatenated with the two digits that subtext determines.

Program 2.9: Give me for each month of the year 2021 the income and expenses with the larger
transfers!

turnover.csv

sel VALUTADATUM subtext 7!2 = 21

MONTH: =VALUTADATUM nthzahl 2

USE : =VERWENDUNGSZWECK subtext 3!6

RECIPIENT:=BEGUENSTIGTER ZAHLUNGSPFLICHTIGER subtext 3!6

gib MONTH,PLUS,MINU, (AMOUNT,USE,RECIPIENT b-) m
PLUS :=AMOUNT if AMOUNT>0 ! © ! ++
MINU:=AMOUNT if AMOUNT<@ ! © ! ++

'3

sel AMOUNT! AMOUNT abs>2'000

rnd 2

Program 2.10: Output the account balances of 2021 as a bar chart output!

turnover.csv

rename VALUTADATUM!DATE

sel DATE subtext 7!12=21

gib DATE,BETRAG 1-

BALANCE:= 5'200 +BETRAG next BALANCE pred +BETRAG at BETRAG
gib DATE,BALANCE 1

Result (bar chart):

26

DATE,BALANCE |
30000

25000

20000

15000

BALANCE

10000

5000

Here, it is assumed that the initial account balance is 5'200. This number is simply added to the first
AMOUNT (BETRAG) value in the above example.

The query possibilities of an account file and other files depend on the existing data. If, for example,
no name for the recipient is given in the purpose of use of the data records, it is not possible to write
well readable queries. The better the data material, the simpler the o++o programs and the more
queries are possible. But this also makes clear that the one who knows the input data can write the
best o++0 programs. A computer scientist, who wants to program general evaluations of such data,
will never be able to make the variety possible, which an end-user reaches, who knows the contents
of the records exactly. The intended use alone offers many possibilities to improve the evaluations,
which are certainly not yet exhausted by many.

The importance of a simple query language will be magnified when money transactions in Germany
are also completely cashless. If everyone has access to the data on their purchases at a supermarket
or gas station, they will be able to determine exactly when and for what they spent their money.

27

3 Table Recursion - Exponential Growth

Recursion is a powerful tool to describe functions or data structures in a short form. It is especially
used in functional languages like OCaml or HASKEL. We introduce a type of "forward recursion" that
is easy to use. An initial value is always described by a value or a term and the following values result
from the direct predecessor by means of a second term, respectively. All generated values are visible
in the result table.

Program 3.1: Compare linear and exponential growth within 20 years.

200

100

YEARL1 := 0 ..20
LINE = 9*YEAR +100
EXPO := 100. next EXPO pred +% 9 at LINE
rnd ©
YEAR ::= YEAR text
Result (bar chart):
YEAR,LINE,EXPO |
500
400
£
m 300
2

28

17 253 433,
18 262 472.
19 271 514.
20 280 560.

In the following program way one can describe exponential growth. EXP9 and EXP1 are the program
lines for this. At the same time, these two columns in the tab representation contain the growth
values. One percent growth is exponential growth if compound interests are taken into account. This
is given in both formulas. If one adds in each case only 9% or 1% of 100 to the predecessor, then the
interest of the interest is not considered. This would be the growth if one takes the interest from the
interest every year. Our formulas for LIN9 and LIN1 correspond to this. These straight-line formulas
and the exponential function curves differ here only at one point. If the operation + is replaced by +
%, linear growth becomes exponential.

As is well known, exponential growth is far superior to any other growth and thus especially to linear
growth. The fact that nine percent interest yields a far better total amount after 20 years than one
percent is shown by the last line of the table (€560 versus €122). Without compound interest, the
results are €280 and €120, respectively. To improve the comparison with polynomial growth, we
have included a parabola.

The green parabola obviously shows a similar behavior in this range of 20 years as the exponential
growth of 9 percent (dark red). In the next example we will see that this changes completely if we
look at 200 years instead of 20. The yellow curve (1 % without compound interest) and the red curve
(exponential growth 1 %) practically did not differ at all.

It should already be mentioned here that the curves are "distorted" so that they look nicer. In school,
LIN1 would have to be drawn with an angle of 45°. LIN9 would be almost vertical with an angle of
more than 83°. If you did that, the values of the fast-growing functions would have no place on the
paper or screen, or you would have to shorten the x-axis (here YEAR) accordingly. But then it would
look as if all points and curves were vertical. This undistorted real representation of the points is
realized by the output 'image'. This doesn't look nice, but people should be confronted with reality
from time to time. Then they can also better classify the visualizations below.

Program 3.2: How does an amount of 100 Euro develop with a "simple" and normal interest rate of
1% and 9%? and with quadratic growth within 20 years.

YEARl:= © .. 20

EXP9,EXP1 := 100.,100. next preds +% (9,1) at YEAR
PAR := YEAR * YEAR + 100

LIN9,LIN1 := 100.,100. next preds + (9,1) at PAR
rnd ©

YEAR: :=YEAR text

RGBDARKRED :=darkred leftat EXP9
RGBRED :=red leftat EXP1
RGBGREEN :=green leftat PAR
RGBORANGE :=orange 1leftat LIN9S
RGBYELLOW :=yellow Ileftat LIN1

Result (line graph):

29

YEAR RGBDARKRED,EXP9,RGBRED EXP1,RGBGREEN,PAR,RGBORANGE,LINO,RGBYELLOW,LINT |
600
500 |
z
-}
o 400 |
=z
-
=
< 300 |
&
i 200 |
[=2]
a
> 5
W 100 o
0
0 1 2 3 4 5 6 7T 8 9 10 1 12 13 14 15 16 17 18 19 20
YEAR
Result (tab)

The new columns EXP9, EXP1 are defined by two formulas. The first element of the list of years is
assigned the value of the first formula. The second value is calculated by the second formula,
where "EXP9 pred" is the value of the predecessor and preds are both predecessors. Therefore,
we get 100. +% 9=109 for the second value of the EXP9 column. The third value is again

30

calculated by the second formula, but now we have to calculate 109 +% 9=118.81 (rounded to
119 at the end of calculations). In the same way, all the following values are calculated value by
value using the second formula. The rounding does not cause any inaccuracies, because it is
done after all calculations.

Program 3.3: How does an amount of 100 Euro develop with a "simple" and normal interest rate of
1 % and 9 % and with quadratic growth within 200 years.

YEAR]1 := 0 .. 200

#EXP9 := 100. next EXP9 pred +% 9 at YEAR

EXP1 := 100. next EXP1 pred +% 1 at YEAR #EXP9
PAR = YEAR * YEAR + 100

LIN9 := 100. next LIN9 pred + 9 at PAR

LIN1 := 100. next LIN1 pred + 1 at LIN9

rnd 0

#tsel VYEAR rest 10 = 0 this condition was applied to reduce the volume of
#tab output.
YEAR: :=YEAR text

'3
#RGBDARKRED :=darkred leftat EXP9
RGBRED :=red leftat EXP1

RGBGREEN :=green leftat PAR
RGBORANGE :=orange leftat LIN9
RGBYELLOW :=yellow leftat LIN1

Result (line chart without EXP9)

YEAR RGBRED,EXP1,RGBGREEN,PAR,RGBORANGE,LIN9 RGBYELLOW,LIN1 |
45000

40000
35000
30000
25000

20000

PAR LIN9 LIN1

15000

EXP1

10000

5000

DOHLHD L0000 H DN D H O H O HO00000HHN0O
- ol AT @B Y O C c ATl M O ANAC S Y OO
O OC AT DY N W87,0°007 000,009, ,t_

Result (line chart with EXPQ9)

31

YEAR,RGBDARKRED,EXP9,RGBRED,EXP1,RGBGREEN,PAR,RGBORANGE,LIN9,RGBYELLOW,LIN1 |
3500000000

3000000000

2500000000

LIN9 LIN1

2000000000

1500000000

1000000000

EXP9 EXP1 PAR

500000000

Result (tab output):

32

The green parabola is not visible in the second image. The corresponding points are behind the other
non-dark red points. Therefore, the parabola looks like a straight line here. The straight line turns
into a fast-growing curve when the even faster growing dark red exponential curve is taken out of
the picture. This can only be understood by comparing the scapings of the ordinates (Y-axes).

Program 3.4: The chess board problem: Place a grain of wheat on the first square, two on the second,
4 on the third, then eight, and so on. This exponential growth is compared with the polynomial X®.
=1 .. 64
:= 1 next FIELD pred *2 at X
=X "8
= FIELD if X<30 ! (FIELD div 1'000'000)
= HIGH8 if X<30 ! (HIGH8 div 1'000'000)

Result (tab):

You can see that the polynomial on the sixth field has already exceeded the million, but the
exponential function is only at 32. In the last line, on the other hand, it becomes clear that the
exponential function is larger than the polynomial value by a factor of about 10'000. From position
30 we omitted the last 6 digits to improve the comparability of such large numbers.

Program 3.5: Calculate the total growth of the gross domestic product in West Germany, East
Germany, and China in the years from 1992 to 2014 using the growth data given.
<TAB!

YEAR, BRDWA, DDRWA, CHINAWA 1

1988 ©. 0. 0.

1989 3.9 1.85 4.2

1991 11.09 -47.8 13.56

1992 1.7 6.2 14.3

1993 -2.6 8.7 13.9

1994 1.4 8.1 13.1

1995 1.4 3.5 11.

1996 0.6 1.6 9.9

1997 1.5 0.5 9.2

1998 2.3 0.2 7.8

1999 2.1 1.8 7.6

2000 3.1 1.2 8.4

2001 1.1 -0.6 8.3

2002 0.1 0.2 9.1

2003 -0.1 -0.3 10.

34

2004 1.6 1.3 1e0.1
2005 0.8 -0.2 11.3
2006 3.8 3.4 12.7
2007 3.3 2.9 14.2
2008 1. 0.6 9.6
2009 -6.1 -3.9 9.2
2010 4.3 3.2 10.6
2011 3.8 1.9 9.5
2012 0.4 0.6 7.7
2013 0.1 -0.1 7.7
2014 1.6 1.4 7.4
ITAB>
sel YEAR>1991
DDR,BRD,CHINA:=100.,100.,100. next preds +%(DDRWA,BRDWA,CHINAWA)
at CHINAWA
rnd 1
gib YEAR,DDR,BRD,CHINA 1
Result (tab output):

With a total growth of 100 to 142, East Germany is clearly better in this time interval than West
Germany with a growth of 100 to 128. Now, we drop the condition YEAR>1991. Furthermore, we
assume that the above data enclosed in TAB brackets are in the file growth.tab.

Program 3.6: Calculate the growth of the gross domestic product in East Germany, West
Germany and China in the years 1988 to 2014 with the indicated growth.

growth.tab

DDR,BRD,CHINA:=100.,100.,100. next preds +% (DDRWA,BRDWA,CHINAWA)
at CHINAWA

rnd 1

YEAR: := YEAR text #tsubtext 3!2

35

TITEL:="red:DDR black:BRD yellow:China"
gib TITEL, (YEAR,DDR,BRD,CHINA 1)

RGB:=red leftat DDR
RGB:=black 1leftat BRD
RGB:=yellow leftat CHINA

Result (bar chart)

1200

1000

800

600

DDR BRD CHINA

400

200

red:DDR black:BRD yellow:China

g‘b% O B o P (o oo o P S oo o8 o8 0 S o ® 7,091 P o (3 oW o o o

Result excluding China (bar chart):

YEAR

36

Red:EastGermany Black:WestGermany

WHIOM IWH3O3

14

12

09 11

08

05

15 96

92

o0
a0

YEAR

Result (tab output):

,BRD , RGB ,CHINA 1)

RGB
1.,0.,0. 100.0 0.,0.,0. 100.0 1.,1.,0.

, (YEAR ,RGB ,DDR ,

TITEL
Red:EastG...

100.0

88
89
91

104.2

1.,0.,0. 101.9 0.,0.,0. 103.9 1.,1.,0.

1.,0.,0.

118.3

53.2 0.,0.,0. 115.4 1.,1.,0.
56.5 0.,0.,0. 117.4 1.,1.,0.
61.4 0.,0.,0. 114.3 1.,1.,0.
66.3 0.,0.,0. 115.9 1.,1.,0.
68.7 0.,0.,0. 117.6 1.,1.,0.
69.8 ©0.,0.,0. 118.3 1.,1.,0.
70.1 0.,0.,0. 120.0 1.,1.,0.
70.3 0.,0.,0. 122.8 1.,1.,0.
71.5 0.,0.,0. 125.4 1.,1.,0.
72.4 0.,0.,0. 129.3 1.,1.,0.
71.9 0.,0.,0. 130.7 1.,1.,0.
72.1 0.,0.,0. 130.8 1.,1.,0.
71.9 0.,0.,0. 130.7 1.,1.,0.
72.8 0.,0.,0. 132.8 1.,1.,0.
72.7 0.,0.,0. 133.8 1.,1.,0.
75.1 0.,0.,0. 138.9 1.,1.,0.
77.3 0.,0.,0. 143.5 1.,1.,0.
77.8 0.,0.,0. 144.9 1.,1.,0.
74.7 0.,0.,0. 136.1 1.,1.,0.
77.1 0.,0.,0. 142.0 1.,1.,0.
78.6 0.,0.,0. 147.3 1.,1.,0.
79.1 0.,0.,0. 147.9 1.,1.,0.

135.3

1.,0.,0.

92

154.1

1.,0.,0.

93

174.2

1.,0.,0.

94
95

193.4

1.,0.,0.

212.5

1.,0.,0.

96
97
98
99
00
o1

232.1

1.,0.,0.

250.2
269.2

1.,0.,0.

1.,0.,0.

291.8

1.,0.,0.

316.1

1.,0.,0.

344.8

1.,0.,0.

02

379.3
417.6

1.,0.,0.

03

1.,0.,0.

04
@5

464.8

1.,0.,0.

523.8

1.,0.,0.

06

598.2
655.6

1.,0.,0.

o7

1.,0.,0.

08

715.9

1.,0.,0.

09

791.8

1.,0.,0.

10
11
12
13

867.1

1.,0.,0.

933.8

79.0 0.,0.,0. 148.1 1.,1.,0. 1005.7

1.,0.,0.

1.,0.,0.

80.1 ©0.,0.,0. 150.5 1.,1.,0. 1080.2

1.,0.,0.

14

We have hidden China in the second chart so that it is easier to see Germany's two growth data. For

example, East Germany produces less than in GDR times. The banking crisis had a major negative

Too much

impact on the East German economy, even though East Germany does not have a bank, ...

information can obscure what seems to be essential.

37

4 Hello otto - gimmick

Program 4.1: Output two words.
Hello otto

Result (tabh)

Program 4.2: Output a pair of two words.
Hello, otto
Result (tab)

Program 4.3: Output a text with spaces.
"Hello Otto"

Result (tab)

Program 4.4: Concatenate two words with spaces.
Hello + " " + otto

Result (tab)

Program 4.5: Give a greeting with a list of two words.
GREETING := Hello otto

Result (ment)

Program 4.6: Output two words each with its own column name.
DEAR:=Hello

GREETING:=otto

Result (tab)

Program 4.7: Output two words with one column name.
GREETING:= "Hello otto"
Result (tabh)

38

Program 4.8: Sort a set of words.
GREETING:= {otto Hello}

Result (tabh)

Program 4.9: Represent one word by metadata and the other by primary data.
HELLO := otto
Result (tab)

5 o++o for kindergarten?

The stroke list is historically the first representation of a number. It could already be a million years
old. Notched wood has been shown to be 150 thousand years old. Concepts first developed in history
are usually simpler than later concepts. That's why tally charts should have a broader scope even in
kindergarten.

The following goals could be pursued with the use of o++0 in kindergarten:

1. By presenting decimal numbers and stroke lists at the same time, a child can better
appreciate the magnitude of numbers. For example, the number one hundred differs from
the number ten only by one digit zero. The corresponding stroke lists, however, differ
considerably.

2. The operation symbols + * - : could be taught. They are probably easier to explain on stroke
lists. The stroke lists could be converted to decimals and vice versa.

3. The algorithm behind the stroke list operation (gib statement) could be taught using
appropriate examples.

5.1 Stroke Lists
Counting animals of different species could give the following small intermediate table:

Elephant | | | |
Deer | |

Pig |1

If another deer comes, a stroke is added to the second line. If, on the other hand, a turkey comes, a
new line must be added with the name turkey and a stroke at the end.

This already poses many problems, although preschoolers can already create such a table if the
words have been replaced by pictures or single letters. It is not clear how many columns this table
has if only "normal" tables are considered. If we allow structured tables, we can say that this table
contains a column ANIMAL and a column STROKE, but the values of the column STROKE can be
"repeated" for each animal. An associated schema ANIMAL, STROKEL m or

ANIMAL, STROKEL 1 would express this. Where | is an abbreviation for list and m stands for set.
These symbols are again used postfix, i.e. they are placed after its arguments. The m is necessary in a
gib-part so that each animal appears only once in the target table.

Since many children are interested in cars, one could count cars analogously to counting animals.
This could result in the following table:

Golf | |
A6 | |
Polo | |
Wartburg | |
A8 | |

Is it possible in kindergarten to increase the structural depth of the table when counting? Then the
following (hsgh-) table could have been created:

vl |
Golf | | | |

Polo | | | | |
Audi | | |
A6 | | |

40

5.2 The conversion operations stroke list to zahl and vice versa
As a dash (stroke) o++0 uses the “|” character. We will illustrate the operations in the following text
with self-explanatory examples.

Program 5.2.1: Stroke list to number Result
| [| zahl

Convert a number into a list of strokes:

Program 5.2.2: Number to tally list Result
| *1 4

|

5.3 The operations + *
Different representations of an addition task. The first input type again determines the output type.

Programs 5.3.1: Four plus four Results
4 + 4

Different representations of a multiplication task:

Programs 5.3.2: Ten times ten Results
10 * 10

Xl:=1 ..10

Yl:= | *1 10 at X

|1

Programs 5.3.3: Two representations of a Result
subtraction task
10 - 5

0 O I

| Program 5.3.4: Place next to each number smaller | Result

41

than 16 the corresponding stroke list
X1:=0 ..15
Y := | *1 X

5.4 o++0 programs to kindergarten?

Which of the following programs are useful for understanding and which are teachable? When is a
syntax too incomprehensible? These questions are outlined below.

Multiplication is counting the number of strokes in a rectangle?

Program 5.4.1: Each of four children gets 3 apples. Result (tabh)
How many apples are there in total ?
NAME1 := Ernst Clara Sophia Claudia Intermediate result after the first 2 lines
APPLE1l:= | | | at NAME
++

Final result (++ stands for many additions)

Program 5.4.2: Each of four children gets 3 apples. Result (tabh)
How many apples are there in total?

NAME1l := Ernst Clara Sophia Claudia Intermediate result after the first 2 lines
APPLEl:= | | | at NAME

gib APPLEL

++1

Final result (++1 counts)

Program 5.4.3: Counting different kinds of animals

ANIMALL:=elephant deer elephant pig elephant deer pig elephant
STROKE:= |

gib ANIMAL,STROKE1l m

42

Result (tabh)

Program 5.4.4: Counting cars

<TAB!

BRAND, COLOR, TYPE, WEIGHT 1
VW Blue Polo 1250
IFA Papyrus 500 580
VW Blue Golf 1450
Audi Yellow Quatro 2070
VW Blue Polo 1380

IFA Beige 601 620
VW Red Golf 1400
Audi Red Quatro 2100
IFA Beige 601 620
VI Beige Polo 1300
ITAB>

gib BRAND,CNT, (COLOR,CNT m) m
CNT:=TYPE ! +4+]|

Result (tabh)

BRAND, CNT, (COLOR, CNT 1) 1

Programs 5.4.5: 3 Division Operations Results
13 div 4

13 : 4

13 divrest 4

All these operations seem too complicated for kindergarten.
If one calculates not only with numbers but also with tables, one could introduce new division
operations. However, this cannot be discussed to the end at this point.

Program 5.4.6: Problem: Distribute 15 apples Result (tabh)
among 4 children. Who designs the o++o program?

|

Another very important operation of digitization is selection. Would a database operation like
selection be teachable to some degree?

43

given:

myfamily.tab

Program 5.4.7: How old is Claudia? Result
aus myfamily.tab
sel Claudia

sel abbreviates selection.

Program 5.4.8: All six years old children are Result
wanted

aus myfamily.tab
sel AGE = 6

Program 5.4.9: All children younger than 6 are Result
wanted
myfamily.tab
sel AGE < 6

44

6 o++0 in School Lessons

There are many possible applications for o++0 in school. Especially in the subjects, mathematics and
computer science. But, also in all other subjects o++0 can be used to extract data from given tables,
documents. We do not want to present all possible typical query examples here. We want to limit
ourselves to the so-called "brute force algorithms" for mathematics. These are the simplest and often
the methodologically best algorithms. Since all these algorithms are implemented in main memory,
we need not worry about efficiency. Now we start with a simple algorithm. We hope that it is the
simplest program for a zero. The section ends with programs for grading students and considerations
that may be important for kindergarten, too.

Program 6.1: Calculate in a simple way the zero of the Result
sine function in the interval [3, 4].

Xl:= 3 ... 4! 0.000°01 X1

sel X sin <@ 3.1416
sel X pos =1

Program 6.2: Calculate in a simple way the zero of the Result
sine function in the interval [3, 4].

Xl:= 3 ... 4! 0.000°01 X1

sel X sin * (X +0.000°01 sin) <=0 3.14159
Program 6.3: Calculate the integer zeros of the Result (tabh)
polynomial "X -15X+56".

Xl:= -100 .. 100 X1

sel X poly [1 -15 56]=0 7 8

or sel X- 15 *X + 56=0

With the following programs, it is shown that students who have not learned integral and differential
calculus are nevertheless able to understand and use their school applications, which are essentially:
1. How large are areas under curves?

2. What are local extrema of functions?

Program 6.4: Calculate the area under a circular arc Result

with diameter 4 in the interval [0, 2].

Xl:=0 ... 2!0.0001 AGG

HEIGHT:= X*X - 4 abs sqgrt 3.14169223791
RECTANGLE : =HEIGHT*0@.0001

gib AGG AGG:=RECTANGLE!++

Program 6.5: Query 6.4, but shorter and more precise.

PI:=0 ... 2!0.000'001 poly [-1 © 4] sqrt*0.000'001 ++ '3

Result

PI

3.141'593'653'28

Program 6.6: Determine pi by zero determination with interval bisection

NR,LE,RI 1 := 3.,4. while NR <39 ! preds ++ :2,RI pred
if preds ++ :2 sin >0 ! LE pred, (preds ++ :2)

45

last

PI:=pi

'3

Intermediate result after first and last program line (tab):
NR, LE , RI 1

1 3. 4.

2 3. 3.5

3 3. 3.25

4 3.125 3.25

5 3.125 3.187'5

6 3.125 3.156'25

7 3.140'625 3.156'25

8 3.140'625 3.148'437'5

9 3.140'625 3.144'531'25
10 3.140'625 3.142'578'125
11 3.140'625 3.141'601'562'5
12 3.141'113'281'25 3.141'601'562'5
13 3.141'357'421'88 3.141'601'562'5
14 3.141'479'492'19 3.141'601'562'5
15 3.141'540'527'34 3.141'601'562'5
16 3.141'571'044'92 3.141'601'562'5
17 3.141'586'303'71 3.141'601'562'5
18 3.141'586'303'71 3.141'593'933'11
19 3.141'590'118'41 3.141'593'933'11
20 3.141'592'025'76 3.141'593'933'11
21 3.141'592'025'76 3.141'592'979'43
22 3.141'592'502'59 3.141'592'979'43
23 3.141'592'502'59 3.141'592'741'01
24 3.141'592'621'8 3.141'592'741'e1
25 3.141'592'621'8 3.141'592'681'41
26 3.141'592'651'61 3.141'592'681'41
27 3.141'592'651'61 3.141'592'666'51
28 3.141'592'651'61 3.141'592'659'06
29 3.141'592'651'61 3.141'592'655'33
30 3.141'592'653'47 3.141'592'655'33
31 3.141'592'653'47 3.141'592'654'4
32 3.141'592'653'47 3.141'592'653'93
33 3.141'592'653'47 3.141'592'653'7
34 3.141'592'653'58 3.141'592'653'7
35 3.141'592'653'58 3.141'592'653'64
36 3.141'592'653'58 3.141'592'653'61
37 3.141'592'653'58 3.141'592'653'6
38 3.141'592'653'58 3.141'592'653'59
Final result:
NR, LE, RI 1, PI
38 3.141'592'653'58 3.141'592'653'59 3.141'592'653'59

Program 6.7: Calculate the first 7 Fibonacci numbers.

Xl:=1 ..
FIB1,FIB2:= 0,1 next FIB2 pred; preds ++ at X

7

Result (tab)

X, FIB

1, FIB2 1

1 o

1

46

Program 6.8: Calculate the Pascal triangle up to the exponent 9.

Nl:=© .. 9
XTUP:= 1 next O,preds + (preds,9) at N
text

Result (tab)

Now we present a brute force algorithm for a maximum.

Program 6.9: Find in a simple way for the local maximum of the sine function in the interval [1, 3].

LOCMAX:=1 ... 3.!0.000°01 sin max '3

Result

Program 6.10: Calculate the sine function and an approximation of the first derivative in the interval
[0,4].

Xl:= 0 ... 10!0.01

SINUS := X sin

DERIVATIVE:=X+0.000'1 sin -(X sin):0.000'1
RGBSIN:=green leftat SINUS
RGBDERIVATIVE:=red leftat DERIVATIVE

Result (image):

Result (tab): It consists of 1001 lines.

The following examples are based on a fictitious table of grades with exams:

Tabment 6.1: guys.tabh (s: sick, a: absent)

| Program 6.11: Calculate the weighted average scores for each person and subject and the total |

48

value. Sort the data.
aus guys.tabh
gib AVG, (NAME,AVG, (SUBJECT,AVG m)m)
AVG:=EXAl ++: *0.6 + (MARK1 ++: *0.4)! ++:
rnd 1

Result (tab):

If we want to calculate the average after the completion of the first test, we can use the following
formula:

AVG:= EXAl nth 1 *0.3 + (MARKL ++: *0.7)! ++:

Program 6.12: Determine all subjects and individuals that received a 1 and a subsequent 3.
aus guys.tabh
sel NAME SUBJECT! MARK=1 & MARK succ=3 #succ = successor

Result:

Now we turn to other "simple" problems. It may be that these tasks are important not only for
school, but also for kindergarten. Now it is commonly assumed that addition of natural numbers is
the easiest and division the most difficult of the four basic arithmetic operations. This could be
wrong. We did experiments with a 3-year-old and a 6-year-old kindergartener. The task was to divide
11 apples among four children. The four children were represented by photographs. Neither the 6-
year-old child nor the 3-year-old child had a problem. They obtained the same result in the division.
It was presented in a table:

49

| Claudia | |
Tabment 6.1: 11 divided by 4

What can we learn from this experiment?
1. Young children cannot divide an apple. They do not yet have a clear understanding of 1/2 or
2/3, ..., so that "ordinary" division cannot be taught.
2. There is no remainder in the division; there is no reason to waste anything.

Let's consider addition, the next simplest operation. The simplest representation of the number
three are three strokes. The same is true for any number of other natural numbers. Here we consider
only two numbers: 3 and 4.

We have to represent them by lists or bags (multisets) because the set {| |} is the same as {|}. The
result of each operation would be one.

APPLE 1

three.tabh

APPLE 1

four.tabh

Program 6.13: three plus four Result

aus three.tabh,four.tabh APPLE1

gib APPLEl LT T 1T 1]

Here, too, it becomes clear that such a process could require only a small amount of effort in the
classroom. But what is the result of 4 apples and 3 pears? Since each pair of two tabments is again a
tabment, the result of this "addition" could be a tabment of the type APPLEI,PEARI.

Multiplication can also be handled in a very simple way. Consider the very simple question of how
many apples are needed for 4 children if each child wants 3 apples:

Program 6.14: four times 3 Intermediate result after line 2
CHILDl:= Ernst Clara Sophia Claudia CHILD, APPLE 1
APPLEl:= | | | at CHILD Ernst [1]
gib APPLEl Clara |||

Sophia | | |

Claudia | | |

Not only this multiplication algorithm is simpler, it also makes it clear that multiplication is essentially
calculating the area of a rectangle.
We also obtain the above intermediate result by the following program:

CHILDl:= Ernst Clara Sophia Claudia

APPLES:= | | | at CHILD

gib CHILD,APPLES 1 # APPLES is atomic, i.e. each apple list is transferred
as one unit

If we want to apply the subtraction operation to collections with different elements (sets), the
subtraction can be expressed by a selection.

50

Program 6.15: Subtraction (difference) with sets Result

NAMEm := {Ernst Clara Ulrike} NAME 1

sel- NAME in {Ulrike Sophia} Clara Ernst

We conclude this section with the following statements:
1. The result of our "arithmetic operations" are not numbers, but tables.
2. Dealing with tables is probably easier than dealing with numbers, because the level of
abstraction is lower.

51

7 Multiplication, School and Digitization

In this chapter, it will be shown that the common multiplication algorithm for decimal numbers could
and should be supplemented by simpler ones and that, more generally, deep digitization should be
pursued. Deep digitization can probably only be implemented through mathematical understanding.
Unlike shallow digitization, where the user is usually presented with a computer result by simply
clicking a button and is often unsure if that result is correct, deep digitization should allow the user to
understand the result in the same way as calculating 132.66 times 453.2 with a calculator. The big
difference between today's use of calculators and today's use of powerful computers is that users
have spent years learning the single data operations: + - * : sin log etc. Mass data
operations are not yet on the curriculum. Selection - sometimes called a filter operation - and
operations to merge table contents for restructuring ... we count among the mass data operations.
These are not applied to individual numbers, but to possibly very large structured tables that may
contain words and text in addition to numbers. If the user has understood such mass data operations
and they have been implemented within the framework of a programming language, he can also
interpret these results and, in case of doubt, correct, change or improve them.

7.1 Who can multiply in their head?

Incident 1

In a mathematics exam that a second-year pharmacy student from Bologna had to take, the student
had to calculate 7 times 8, among other things. The pharmacy student: 59

The algebra professor: But 59 is not an even number. The pharmacy student: 64

Incident 2

Wallerie - an Erfurt kindergarten girl in the large group - is already a student today.

| gave her a task: How many effervescent bottles does a crate with 4 rows contain if there are 5
bottles in each row?

Wallerie thought for a while: Nineteen

Her father - a young engineer: You don't calculate, you guess.

Incident 3
| ask Isabella, a second-grade pupil from Gerwisch: How much is 3 times 4? After a while: Twelve
The father: That took a long time.

From the second incident, | conclude that preschoolers have already understood the essence of
multiplication. Of course, it is possible that some preschoolers.... cannot calculate 4 times 5 exactly in
their head. But 3 times 4 | would trust any child to do. There is no question that they will never be
able to calculate 12 times 13 in this way. In fact, | don't think any human being is capable of
calculating 7 times 8 in their head. Older adults have had to calculate(?) the multiplication tables so
many times in school that they can only do it by heart and don't remember how they multiplied as a
child. It used to be very important to know the multiplication table by heart because it was a
prerequisite for written decimal multiplication.

My opinion: In the many school years that the multiplication tables were taught, the original neuron
connections or brain cells were "overwritten" and are practically no longer present.

Therefore, the vast majority of adults are not able to perform the original multiplication in their
heads. They can only do multiplication tables by heart and cannot do written decimal multiplication
in their heads. Even when multiplying smaller numbers such as 29 times 63, they will work with
easier-to-use arithmetic laws and not use the algorithm in which their teachers, parents and
grandparents invested a lot of time and effort. Based on incidents 1, 2, and 3, one can even surmise
that many adults don't even know that children have to do math to get the results. When you're that

52

young, you can't memorize it yet without doing the math. An almost correct answer indicates that
arithmetic has been done.

7.2 Who can multiply in writing?

Calculating 7 times 8 with a pencil should be mastered by every child in the second grade. The
prerequisite is that you can imagine the numbers up to one hundred. You can do that if you can
count to a hundred. If you illustrate the task, many children should be able to solve it even faster:
Each of the seven children wants eight candies. How many candies do you need to buy?

1. Write the names of seven children one below the other.

2. Put eight strokes legibly after each name.

3. Count all the strokes.

4. Convert the result into a decimal number.

If someone wants to calculate 100 times 100 in this way, the probability of getting a correct
result is very low. Moreover, it would take a very, very long time. In the age of powerful computers,
however, these arguments should be insignificant. What matters is to have a clear understanding of
an algorithm. The question remains:

Is stroke list multiplication the simplest multiplication algorithm?

7.3 Who can program the multiplication?

Program 7.3.1: Stroke list multiplication in o++o (7*8)
NAME1l:=Tina Ernst Clara Sophia Ulrike Claudia Kathe
STROKEL:= | | | | | | | | at NAME

gib STROKE1

++1

Intermediate result after 2 lines in tabh format

Final result

If you are only interested in the end result, you can also replace all names with one. You could also
write a gib statement for the last two lines that counts through regardless of the given structure:

Program 7.3.2: Shortened stroke list multiplication in o++o0
NAME1 := otto *1 7
STROKEl:= | *1 8 at NAME
gib SEVEN_TIME_EIGHT
SEVEN_TIMES_EIGHT:= STROKE! ++1

Result

53

This program can only be formulated because o++0 works with structured tables. Everybody should
judge for himself which multiplication is more child-like and therefore easier to understand. At this
point it should be mentioned that o++o multiplication is much more general than in other
programming languages. However, this does not mean the program above, but the operation hidden
behind the symbol *. For example, you can multiply a whole tabment by a number:

Program 7.3.3: Convert several German net prices with o++o0 into gross prices.

GROSS1:=66.1 675.8 77 *1.19

Result (tabh)

GROSS1
78.659 804.202 91.63

The section concludes with a multiplication algorithm that is reminiscent of pivot tables, but very
close to the decimal multiplication algorithm taught in schools today.
The pivot element can be determined with 2 o++o lines.

Program 7.3.4: Multiplication of a list of length 2 by a triple using matrix multiplication (13*124)

[10 3] *mat (100,20,4)
Cross ++

Intermediate result after the first line in tab format

ZAHL ,ZAHL ,ZAHL 1

1600 200 40
3006 60 12

Final result in (.tab)

ZAHL ,ZAHL ,ZAHL ,SuM? 1

1000 200 40 1240
300 60 12 372
1300 260 52 1612

The final result of multiplying 13 times 124 is1612.
Math teachers must find out whether this multiplication is easier to teach than today's multiplication
with decimals by having entire classes multiply using both methods.

Program 7.3.5: A complete o++o-program for multiplication, based on matrix-multiplication

X:=4321

Y:=678

XX:=X cut 1 zahl

YY:=Y cut 1 zahl

XL:=XX ++1

YL:=YY ++1

BXl:= 10 ~ (XL- 1 ... @! -1) * XX
BYl:= 10 ~ (YL- 1 ... @! -1) * YY
MATRIX:= BX1 *mat (BYl transpose)
gib MATRIX

Cross ++

last

gib SUM

'3

Result (tab)

SUM

2'929'638

54

cut and other operations could also be used advantageously for teaching German or English. Each
letter is converted into a digit by the conversion function zahl. Teaching cross-multiplication in one
form or another would also prepare students for the use of pivot tables, which play a large role in
today's practice.

The last program in this section is intended to implement pivot multiplication with the help of user
defined o++o-operations.

Program 7.3.6: More detailed matrix multiplication of factors 7'653 and 4'322 in o++0
defop $X myop.powerlist = begin
X11:=$X cut 1 zahl

gib X1 1-

XPOT:= (10 ~ (X1 pos - 1))

X2:= XPOT * X1

gib X21-

end

aus 7'653 myop.powerlist

*mat 4'322 myop.powerlist transpose
Cross ++

last

gib SUM

'3

Final result (tab)

33'076'266

7.4 Stroke list multiplication versus decimal multiplication

The written decimal multiplication had a great importance because many people could calculate with
it even two 8-digit numbers correctly with high probability. The correctness could be improved even
more by the sample of nine. In addition, it was by far the fastest algorithm in earlier practice.

The later slide rule was faster, but not as accurate. The number table with logarithms was too
demanding for some. In the age of computers, both techniques have already been mothballed.

The written decimal algorithm is still used by many people ..., and everyone who masters it is proud
of his skills. The question is: Can we replace the decimal multiplication algorithm in school with the
stroke list multiplication or/and complement it with other multiplication algorithms?

The dash multiplication has not only the advantage that it can be taught already in an earlier class. If
this algorithm is repeated accordingly, everybody notices that just this multiplication realizes the
standard application - a rectangular area calculation. To derive this application from decimal
multiplication seems too difficult. Given the programmability of both algorithms, it should quickly
become clear that dash multiplication is far superior to decimal multiplication. The dash list
multiplication above requires 4 steps to be processed in sequence. In particular, there is no loop and
no recursion. On the other hand, the above algorithm shows that a programming language must be
able to work with structured tables in order to provide user-friendly multiplication programs. Since
this stroke multiplication processes mass data in a sense, it prepares better for the digitization of
society than the algorithm taught in schools today. If it is desired that everyone should be able to
program multiplication, simpler multiplication algorithms must be taught.

7.5 How o++0 could enrich the school curriculum?

We have developed a data model with an associated programming language o++o0, which should not
only be the basis for information systems for business, but also offer many advantages for school
teaching. Since the language o++o0 is based on mathematical concepts, it should be integrated into
mathematics classes. But, also in the other subjects o++o can be used usefully, because the

55

extraction and visualization of information from the German Wikipedia seems to be important for
every school subject. A programming language should enable students to better solve the many tasks
they will face in their future. This is especially true for the digitalization ahead of us. Digital actually
means that everything comes down to two things - zero and one. | can't imagine anyone tracing the
powerful stroke list operation behind the gib statement, for example, to such thinking. Our axioms of
the stroke list operation were formulated at a high abstract algebraic level, where thinking in terms
of zeros and ones is only a hindrance. For mathematics, abstraction is more important than
digitization in the true sense of the word. Although o++o has so far only dealt with questions of
content, CSS in o++0 can also be used to realize many questions of format. The following example
shows that it also makes sense to capture form questions directly in o++o:

Program 7.5.1: The product of 5 numbers in thousands format in o++o
28'911 5'233 199 6'311 6'781 ** '3

Result
1'288'424"'128'758'129'267

o++o could perhaps be taught in the lower grades:

Program 7.5.2: The sum of the first hundred numbers (Gauss problem)
1 .. 100 ++

Result
5050

| think that these and many other difficult problems could be taught in the lower grades as well. So as
not to be misunderstood at this point. We should already be drawing on experience gained decades
ago with calculators when introducing digitization in schools. Also, the too early and too wide use of
calculators has probably led to many students having a poorer command of basic arithmetic..., worse
at calculating in their heads than in earlier grades. With incorrect inputs to the calculator, many also
seem unable to estimate the expected magnitudes of the results. For this reason, the calculator is not
allowed here until seventh grade.

For example, | even think that spelling programs like WORD should not be taught in school until
about the seventh grade, either. If a student has experienced firsthand that WORD corrects almost all
of his spelling mistakes, it is very difficult to make him understand ... that his own spelling skills are
important for his future. Similarly, | would have the introduction of digital whiteboards critically
examined.

Last December, at the University of Halle, | noticed that mathematics professors were still working
with blackboards and ordinary chalk.

Program 7.5.3: Execute an o++0 program in the second class on the blackboard.
4 31 12 ++

This calculation on the blackboard with chalk or pencil could also prepare for future digitization. In
addition, for motivation reasons, the teacher could already demonstrate to the lower grade students
that the symbol ++ can be used to solve the Gaussian problem or even larger problems. In my
opinion, many people do not actively know how to formulate a conditional, although it is not
difficult. However, it is not part of the curriculum. The conditions that select all people living in
Magdeburg LOCATION=Magdeburg or filter out all rivers that are longer than 1000 km
LENGTH>1000 do not look complicated. Many can't do that, because today's search engines don't
ask for that or can't handle it. But if | need to spontaneously extract important information from a
company database in a future company, | need to know that.

In my opinion, students' problem-solving skills can be improved in many ways. Even the applications
of differential and integral calculus could be taught in secondary schools without having to

56

understand the difficult theories of Leibniz and Newton. With o++o, we can calculate areas under
curves in a short line of code without using hard-to-read loops. An approximation of the area under a
part of the first sinusoidal arc can be calculated in one line using Archimedes' 2000 year old
algorithm:

Program 7.5.4: This o++0 program does not require integral calculus!
1 ... 210.000°1 sin *0.000°1 ++

Result
0.956536680039

In the following, an application of differential calculus is presented, which can be performed without
knowledge of differential calculus.

Program 7.5.5: An o++0 program to approximate the local minimum of the parabola (a special
polynomial) "3 x>+ 4 x + 6"!

-10 ... 10!0.0001 poly 3 4 6 min

Result

4.66666667

| believe that this can be taught already in every 9th or 10th grade, without going into details here.
When | talk to students, | sometimes have the impression that computer science classes are more
about form issues (HTML, ...) than content. We know that it is very hard, but we should still reach the
goal given by Dr. Angela Merkel: Everyone should learn to read and calculate, but also to program.
If you look at programming languages like C, Java or Python, the goal is not feasible. For that, you
need simpler languages that are able to solve end-user problems with short programs. C and Co. had
other goals. They should serve to program systems on which hundreds or more people can work,
which can contain many millions of lines of code and still work performantly. o++o follows the new
paradigm of table-oriented programming and has above all the goal formulated by A. Merkel. If o++o0
had not put methodical and pragmatic questions in the foreground from the beginning, this goal
would not be realizable also with o++0. Mastering operations for mass data seems to be necessary
for a long-term digitization strategy.

7.6 Can the stroke list operation be taught as early as third grade?

As already mentioned, the gib statement, which includes the dash list operation, is a powerful tool. It
can be used not only to sort normal flat tables, but also any tables. At the same time, you can also
use aggregations such as ++ (sum), ++1 (count), etc. If third grade students have difficulty with a
formal syntax, it does not necessarily mean that the algorithm behind it cannot be taught. For
example, they could count animals. This does not have to be just a number. A table that determines
the number for each type of animal would certainly be easy to teach as well:

Program 7.6.1: Counting animal species with strokes
ANIMAL]:=donkey sow boar donkey boar sow donkey
STROKE:= | at ANIMAL

gib ANIMAL,STROKELl m

Result (tabh)
ANIMAL, STROKEL m

Boar | |
Donkey | | |
Sow | |

57

The following example is a bit more demanding, because the results table is structured.

Program 7.6.2: Counting in structured tables
<TAB!

BRAND,COLOR, TYPE, WEIGHT 1

VI Blue Polo 1250

IFA Papyrus 500 580

VW Blue Golf 1450

Audi VYellow Quatro 2070

VI Blue Polo 1380

IFA Beige 601 620
VW Red Golf 1400
Audi Red Quatro 2100
IFA Beige 601 620
VW Beige Polo 1300
ITAB>

gib BRAND,CNT, (COLOR,CNT m) m
CNT:=TYPE! ++]|

Result:

You can perhaps imagine children counting and sorting at the blackboard using this algorithm. In o+
+0 a set (m) or a multiset (bag) is always sorted by the first column names. In the example above
these are BRAND and COLOR.

That is, children can presumably sort data in structured tables. However, today's computer science
students do not learn a sorting algorithm for structured tables. An article of mine in the German
Wikipedia, which included especially this sorting, was deleted, because it "does not belong to the
basic knowledge of a computer scientist".

58

7.7 Does the school calculator from Texas-Instruments calculate wrong?

SIN-T

SIN

FRQ

follows:

sin(3,14)

The TI-30 ECO RS calculator shown on the left, which has
been approved by German education ministries as a
school pocket calculator, gives the following results for
the task

2/r213

64. Correct according to the rules of today's
mathematical conventions, which can also be read in
Wikipedia under operator order (right-associative),
would be 256.

For ~, however, you have to type the symbol y* there.

Now, of course, you can say that every company can
calculate as it pleases. They do that, too. With the
Windows calculator (mode normal), 1 + 2 x 3 also results
in a wrong solution in the sense of school mathematics.
Saxony-Anhalt may not have enough money to sue the
American tech giant Microsoft. But how can we prevent
many students from losing their orientation because of
this "diversity"?

As the picture above suggests, the calculator makes a
very good impression. However, it behaves differently
from what is taught in school in many other aspects and
is also difficult to use, making it prone to errors even in
simple tasks.

In mathematics, the "sine of 3.14" is usually written as

In the mathematics textbook "Schlissel zur Mathematik" (Sekundarstufe Sachsen-Anhalt Klasse 10
Cornelsen, ISBN 978-3-06-0044558-7) it says more regrettably:

"The function f(x) = sin x is called a sine function."

The Texas Instruments calculator does not accept the comma as a decimal number separator and you
must first press 3.14 and then the sin key. At least Texas Instruments is consistent in typing at this
point. The square root of 4 is also found by first typing the 4 and then the square root sign. As
everyone expects, the result is 2. But 2 without the decimal point would also be conceivable? With
2+2, Texas Instruments also determines 4. and not 4, although everyone knows that the result of this
addition is an integer. To prevent misunderstandings at this point: We do not criticize that this Texas
Instruments calculator chooses the more user-friendly typing variant for unary operations, but that
curriculum and school practice differ substantially here.

Designations on the keyboard are also surprising.

s+ (EE, RCL, STO, ...).

59

Many people are already familiar with the M+ symbol - add to memory - due to predecessor
computers. Is innovation to be feigned here?

In this context, it is also interesting to note that
pocket calculators already existed in the 1970s
whose range of functions was perfectly
| | 1415826 08 adequate for use in mathematics lessons and
for a large number of applications, especially in
the scientific and technical fields.

(MBD) de Luxe V

These calculators were characterized by a clear
keyboard layout that did without multiple key
assignments. The calculator architecture
consistently implemented left-to-right
arithmetic, and it was possible to dispense with
bracket levels. The range of functions was
limited to the necessary and frequently used
functions. These minimized problems arising
from different designs and ensured simple and
intuitive operation.

One example is the scientific calculator shown
in the figure, developed and produced in Japan
in 1975.

From o++o point of view, however, the TI-30 ECO RS behaves correctly for the most part in these
problems. For example, with 2 to the power of 3 to the power of 4, it chooses the way of calculating
that the majority of people prefer, namely to calculate from left to right. This is also true for
engineers, as | experienced many times. That unary functions are typed after the number (the
argument), we also welcome, because this way of calculation also follows the principle from-left-to-
right:

3.14 sin cos

The calculator from Texas-Instruments first calculates the sine and applies then the cosine function
to the result. This is not taught in math classes, but it is also easier to understand. Unfortunately, the
calculator is not completely consistent at this point. At 1 + 2 x 3, it no longer calculates from-left-to-
right. Now, it calculates as Descartes supposedly wanted it to do. Only so that one could write a
polynomial somewhat more elegantly, humans gave up the general principle from-left-to-right to
calculate. Since one can regard today also a list of numbers as input value, this argumentation from
the 17-th century has no more right to exist from our point of view. Instead of

X2+2*X2+3*X+4
we can today briefly and succinctly type: Xpoly1234 or Xpoly[1234]

In general, we also estimate that most of today's calculators are morally worn out. They should no
longer be used at school at all. The first electronic, actually palm-sized calculator was developed as
early as 1967 and had - as is still common today - a very small display. Since cell phones with much
larger displays exist today in 2023 and we also know much more powerful apps with a much wider

60

range of applications, calculators should generally be banned from school today or displayed in the
school museum.

Let's consider a very simple problem. You want to add 10 numbers with the Texas Instruments
calculator. At the end of the calculation, when you realize that the result cannot be correct, you
cannot look at the input again. You have to type in all the numbers again. It is unclear whether you
do this correctly if all these numbers consist of 10 digits.

Let's continue by looking at the % key. If you play with the calculator and type for example
10%
the result is 0.1.

So, you might suspect that the percent key is just mislabeled, and it just divides by 100. The percent
key is also hard to type on this calculator, since you have to type 2nd beforehand. Also, once you find
the little blue percent sign, which doesn't have its own key, you have to concentrate very hard to see
if you should press the key above or below it. These are, of course, potential sources of error. Of
course, you also have to know whether the 2nd key is only valid for the next operation or until | press
it again. If one then types for example

10+10%

If you press =, you first get 1. Only when you press = again does the current user get the number 11
that he probably wants.

But if you think mathematically, only one of the following two solutions comes into question:
10 + (10 %)

or

(10 + 10) %

You get 10.1 in the first case and 0.2 in the second.

That is, with this symbol mathematical thinking is contradicted. How should one understand
10+10%

differently as a term? Why do all students need to learn a term definition if it is not applied in
calculator practice at school?

To our knowledge, there is only one programming language that uses this symbol at all in connection
with percentage calculation. Here, however, +% is used as a two-digit operation symbol. This also
makes it mathematically clear and clean.

Just as the three letters of sin represent one operation symbol, +% is also one operation.
In o++0 results in 10 +% 10 11..

If you type in the Texas Instruments calculator

10 sin x*

so you never see on the display which operation symbol you have just typed or typed before.
Furthermore, the keyboard labels make it difficult to understand the "dot before dash" rule when the
multiplication sign consists of 2 dashes and the division sign contains a dash. We conclude the

61

section with what appears to be a very simple multiple addition. We think that hardly anyone can
correctly manage an addition of very many numbers with a calculator.

7.8 Is EXCEL morally worn out?

Program 7.8.1: An o++0 program for which EXCEL needs more than six worksheets!

<TAB!
NAME, LENGTH, (AGE,WEIGHT m)m
Klaus 1.68 18 61

30 65
61 80
Rolf 1.78 40 72
Kathi 1.70 18 55
40 70
Walleri 1.00 3 16
Victoria 1.61 13 51
Bert 1.72 18 66
30 70

ITAB>

sel NAME! AGE>20

gib BMI, (AGE,BMI, (NAME,BMI m) m) BMI:=WEIGHT:LENGTH:LENGTH!++:
rnd 2

If you realize this o++o program in EXCEL you need more than 6 worksheets. Hardly anyone
overlooks these EXCEL sheets, which is why they are very difficult to change. More details can be
found under o++o versus EXCEL. Spreadsheet programs have several advantages and are widely
used, but they also have a number of disadvantages, which we will list:

1. Data and formulas are mixed. For this reason, and because an EXCEL worksheet can contain
hundreds or even thousands of formulas, it is almost impossible to check the correctness of
the programs or to adapt them to changes.

2. EXCEL does not know schemas for structured tables: e.g. SUBJECT,MARKI | describes a
structured schema - here a list of subjects is described, and for each subject there is also a list
of marks.

3. EXCEL can display structured tables visually, but it cannot sort them directly or process them
reasonably.

4. You cannot use EXCEL to query databases, XML or Wikipedia. For that you would still have to
learn SQL, XQuery or better o++o.

5. EXCEL formulas are relatively cryptic because, for example, they often contain individual cell
designations. For example, the sum over a column is written in EXCEL in the form:
=SUM(F12:F75)

6. A single EXCEL formula can require more analysis than a complete o++o program.

7. EXCEL contains only a few mathematical concepts and therefore requires an excessive
amount of detailed knowledge.

8. EXCEL offers the comma as the decimal point to German and other users. However, this
makes it difficult to exchange corresponding worksheets of international companies across
country borders, since many countries prefer the decimal point.

9. Since data and programs are usually separated in o++o, the data can be used by several
programs without any problems. This is more difficult with EXCEL.

10. For aggregations (sums, averages, maxima, etc.) per value you have in general to presort or
group in EXCEL but not in o++o.

11. In EXCEL, you have to write each number in a separate cell. This could quickly overwhelm a
smartphone screen.

62

12. o++0 is based on an abstract tabment concept for data. A tabment can already be
represented in many ways by default: web tab xml image column ... and also compact (hsq).
With CSS, the output of o++0 can be formatted almost arbitrarily. EXCEL, on the other hand,
is based on a concrete print image. This makes it easier to create simple applications at first,
but it is rather a disadvantage for the complexity of today's applications.
13. After studying the above criticisms of EXCEL, a VW engineer remarked: At VW, EXCEL can be
used by any employee at will. As a rule, however, it is only simple tables that are to be made
"nice". Sometimes a few simple arithmetic operations are necessary. Comprehensive,
complex applications do not take place in EXCEL.
EXCEL does not know mass data operations and could be morally worn out for this reason alone.
Therefore, | plead for removing EXCEL programs also from school lessons and replacing them by
more powerful and promising concepts and systems.

7.9 o0++0 Proofs

Proofs have played a minor role in school and even outside the world of professional
mathematicians. Yet everyone wants to have confidence in a calculation, a system, or a calculator.
When confronted with a new type of calculator or system, everyone first tries to solve problems like
2 times 3. Who suspects further problems, testse.g. 1 plus 2 times 3.

The highly respected German economist Professor Sinn says in his lecture Energiewende ins Nichts
(see youtube) that calculations only really make sense if you can understand them. To do this, you
have to understand all the sub-steps in detail.

We have been working on this requirement of Prof. Sinn for decades. The SQL designers had
formulated this requirement somewhat differently at the beginning of their development:

SQL should become an end-user language.

It follows directly that the average consumer should be able to understand SQL programs. Today,
however, almost all SQL programmers come from the computer science corner.

The importance of statistics in schools is increasing.

How to teach a student a new statistical function, such as the average ++: or the function mad of
o++o. If you simply apply the function to several lists of numbers and look at the result, you usually
cannot understand its meaning. However, if the teacher knows that the students have already
understood the functions ++ (sum)and ++1 (count), this is no longer so difficult.

Program 7.9.1: Preparation of an o++o proof for the ++: operation..
Xl:=35421

SUM:=X1 ++

CNT:=X1 ++1

MYAVG:=SUM:CNT

OTTOAVG: =X1++:

Result (ment)

<TABM>
<SUM>15</SUM>
<COUNT>5</COUNT>
<AVERAGE>3.</AVERAGE>
<OTTOAVG>3.</OTTOAVG>
<X>3</X>
<X>5</X>
<X>4</X>
<X>2</X>
<X>1</X>

</TABM>

63

Despite this (docu)ment output, it is clear that the two average values match. Here the ment output
agrees almost completely with the xml output. The columns MYAVG and OTTOAVG must however
agree with all other input lists. The program has the advantage of being very simple. But the student
still has to enter a lot of data. Using the example of o++0-mad, which has not yet played a big role in
Germany, we want to show that an extended o++o program can relieve us of much of the typing
work. This mad function is one of the simplest and clearest statistical functions, but it has not so nice
mathematical properties. Now, we assume knowledge of the operations ++:, . .x and abs. By
from ..x tol!cnt

alist of cnt random numbers between from and to is generated. abs calculates the absolute
value.

Program 7.9.2: o++o0 Proof for the ++: Operation.
RANDOMNR1:= 1 ..x 10!10

X1l:= 1 ..x RANDOMNR!RANDOMNR

AVG:=X1 ++:

DISTANCE:=AVG - X abs
MYMAD : =DISTANCE1 ++:

OTTOMAD :=X1 mad

gib AVG,MYMAD,OTTOMAD 1

Result (tab)

AVG, MYMAD, OTTOMAD
2.8 1.44 1.44
4.16666666667 1.5 1.5
1.33333333333 0.444444444444 ©.444444444444
1.5 8.5 0.5

5. 2.8 2.8

1. 0. 0.

3. 1.6 1.6

1. 0. 0.

1. 0. 0.

1. 0. 0.

We can easily extend the result table to a thousand output rows table by replacing the last number 10
of the first row with 1000. We have extracted only the relevant columns with the gib statement.

7.10 An example of deep digitization
Perhaps the following example makes the concept of deep digitization a little clearer: If addition,
multiplication, were not taught in school, today, for example, you would need different apps to solve
the following two problems.
An analogy to deep digitization from the field of "single data" operations

1. T have received a load of 36.57 tons of bulk material and will receive 31 more loads of this

type. How much bulk will I have in total?
2. I have arectangular plot of land 32 m wide and 36.57 m long. What is the size of my plot?

Everyone who has understood multiplication knows that it is one and the same problem that can be
solved very easily with a simple calculator. For today's digitization, this means that a deep digitization
could require far fewer computer applications than a FD (flat digitization) and that the end users
(managers, politicians, ...) could master far more traditional applications (apps). After all, if the apps
and applications are based on one (e.g. o++0) data model, one can of course also standardize the
interfaces of these apps and such an application could replace many conventional FD applications.

64

8 Schemes and Structured Tables

All column names of a table are often considered as a schema of the table. Column names are
necessary to understand corresponding column values correctly. If we consider structured tables, it is
advantageous to enrich the column names with corresponding collection symbols; for example, | for
list.

Tabment 8.1: ottos.tab

The above table (TABMENT=TABelle+dokuMENT) ottos.tab contains a list of 6 "persons" and for each
person a repeating group (DEED, YEAR I) - a list of (DEED, YEAR)-pairs. Here, a person has 4 columns,
but it is a triple (3-tuple). It is a structured tuple, struple for short (designation of Prof. Schek). The
first two components are of type TEXT and the third component is a list of sub tuples (pairs) (2-
tuples). We will call the attribute values of a level segment.

The first NAME segment is:

The first DEED segment of Otto the Great reads:

The first person corresponds to the first struple; it is a NAME tuple:

Since the DEED tuples (= DEED sub-tuples) do not contain any other collections, a DEED segment is
the same as a DEED tuple. If we were to represent the above table by an ordinary flat table, every
(NAME, BORNIN)-pair would have to appear in every row. That is, (Otto the Great, Old Saxony(De))
would have to appear 3 times (once for each DEED segment). Then, for example, it is not so easy to
count the persons in the table. With the above table, the corresponding program looks like this:

Program 8.1: How many ottos are contained in the table ? (How many elements (struples) does
the outermost collection contain?)
ottos.tab

++1

Here and in the following, we use these abbreviations and keywords:

aus: from

++1: count

gib: (corresponds to the SELECT of SQL)

sel : selection

sel-: selection

:=: assignment (extends the specified table by a new (complex) column)
m: set: contains different elements

b: Bag: an element may occur more than once

I: list: the order of the elements is important

The result of program 8.1 is a simple table:

ZAHL

6

The schema of this table does not contain a collection symbol because the table contains exactly one
element. Similarly, we do not need a collection symbol in the following 2 queries. We do not want to
explain the following queries in detail. We use the queries to illustrate what different types of tables
there are and what schemas belong to them.

Program 8.2: How many persons and how many deeds are contained in the file ottos.tab?

ottos.tab

gib CNTPERSON,CNTDEED
CNTPERSON:= NAME! ++1
CNTDEED DEED! ++1

Result (tab)

CNTPERSON, CNTDEED

6 12

Program 8.3: Tell me the name of the person born in Saxony.
aus ottos.tab

sel Saxony in BORNIN

gib NAME

Result

NAME

Otto the Great

Program 8.4: Give me the name of a noble person.
aus ottos.tab

sel von in NAME

gib NAME

Result

NAME

Otto von Moravia

If keywords like "sel " and "in" are highlighted in color in the future o++o software, the second
program line will also be easier to read.

Here it would be better to output the names of all the nobles:

66

Program 8.5: Sort all noble names
aus ottos.tab

sel von in NAME

gib NAMEm

Result (tab)

To save space on the screen or paper, we can also arrange the elements of a one-column-list or other
collection horizontally:

Result (tabh)

Program 8.6: Count all deeds and all deeds of each century. Add to each century the
corresponding people.
aus ottos.tab
CENTURY:=YEAR div 100 +1
gib CNTDEED, (CENTURY,CNTDEED,NAMEm m)
CNTDEED:= DEED ! ++1

Result (Table with 3 segment types: CNTDEED, (CENTURY, CNTDEED2) and NAME)

Program 8.7: Count all the acts and the acts of each century with corresponding persons, where
for each act the corresponding person must appear (with duplicates).
aus ottos.tab
CENTURY:=YEAR div 100 +1
gib CNTDEED, (CENTURY,CNTDEED,NAMEb m)
CNTDEED:= DEED ! ++1
Result (tab)

Where b stands for bag (multiset). So far, we have considered only tables with nested levels. But a
structured table may also contain "independent" collections:

Tabment 8.2: emperors.tab

In this table "Memleben" and "Otto the Great" are in the same relation to each other as "Adelheid"
and "Otto the Great". But this does not mean that "Adelheid" and "Memleben" are related to each
other although they are in the same row. Therefore, the following restructuring is senseless.

Program 8.8: Query with empty result

aus emperors.tab

gib NAME,RESIDENCE,WIFE m

gib NAME,RESIDENCEm,WIFEm m is useful, however.

68

9 Tabment types (TTs) and structured documents

For structured tables and documents, we use the name Tabment. Therefore, we abbreviate the type
of a tabment with TT (Tabment Type). The TT completes the information given by a schema. It
specifies for each tag its schema. For example, the TT for the above table ottos.tab is:

TEXT and ZAHL (integer) are elementary types that need no further explanation. Each named
tabment is surrounded by a tag that is derived from the file name by omitting the type suffix.
Therefore, our first table can also be presented in document style or in a document style with inner
tables (ment or xml).

for example:

Tabment 9.1: Table ottos.tab in XML document style

Tabment 9.2: Table ottos.tab in hsq style

We consider a document with TT. It uses alternatives through (|). It comes from the XQuery use
cases (C+07).

[</RePORT>]
Tabment 9.3: reportl.ment

In reportl.xml the CONTENT is a list of elements, where each element is either of type TEXT,
ANESTESIA, PREPARATION, CUT, ACTION or OBSERVATION. In the above document, the first element
is simple TEXT, the second is of type ANESTESIA, the third is of type PREPARATION, etc. Since our
report was tagged in the above way, the following example queries are possible.

For example:

Program 9.1: What instruments were used in the second cut?
aus reportl.ment

gib CUT1

sel CUT pos = 2

gib INSTRUMENT1

Result (tab)

Program 9.2: What are the first two instruments used?
aus reportl.ment

gib INSTRUMENT1

sel INSTRUMENT pos < 3

Result (tab)

71

10 A university database

We consider a non-relational database consisting of one flat and two structured tables:

The underlined column names are keys. The last two tables can be represented by the following 5
flat relations:

studentl: STID,NAME,LOC?,STIP,FAC m
examl: STID,COURSE,MARK m
projectsi: STID,PROJ,HOURS m
coursel: COURSE, TEACHER m

course_books1l: COURSE,ISBN,TITLE m

Tabment 10.1: facs.tab

Tabment 10.2: students.tab

Tabment 10.3: courses.tab

Tabment 10.4: studentsl.tab

Tabment 10.5: examsl.tab

Tabment 10.6: projectsl.tab

The above tables and the following programs refer to tab files, although we keep in mind that the
specified tables could be database tables.

10.1 Selection (sel sel-)
A condition specifies tuples or sub tuples. In a sel clause the specified tuples form the result, in a sel-
clause the specified tuples are omitted.

Consequently, the schema and the TT of the considered tabment are not changed by a selection.
Column names or tags are written in upper case in an o++o program. They must start with a letter or
the character "_". A WORT (word) that is not enclosed by "-symbols must therefore use a lowercase
letter. TEXT may contain spaces; however, they must then be enclosed in "-symbols.

Program 10.1.1: Find all students from Berlin and Oehna with bad results..
aus students.tab

sel LOC in "Berlin Oehna" # selects students

sel MARK > 2 # selects exams and students
Result (tab)

Intermediate result after the first condition

73

The second "condition" is applied to the result of the first condition. The second "condition" is an
abbreviation for the following two conditions:

sel STID! MARK>2 # Selection STID tuple (MARK>2 must exist)
sel COURSE! MARK>2 # Selection COURSE tuple

The first of these two conditions expresses that we select (complete) student tuples for which there
exist (COURSE,MARK) sub tuples with a grade of 3 or higher. We do not write the existence
quantifier because there are several EXIST quantifier behind each condition. "#" is the comment
symbol for a line. It can be used to describe the meaning of a program step. Also, lines can be
commented out to indicate intermediate results.

Program 10.1.2: For all students from Oehna and Berlin, indicate all results with 3 or worse.
aus students.tab
sel LOC in "Berlin Oehna" # equivalent: LOC in [Berlin Oehna]
equivalent: LOC in Berlin Oehna
sel COURSE! MARK>2 # selects exams and not students
gib NAME,LOC, (COURSE,MARK m) b

Result (tab)

After applying the two conditions, the restructuring (see section 10.3) was applied. Therefore, the
scheme of the result has changed and the data has been sorted.

Program 10.1.3: Find all students from Oehna and Berlin with a grade of 3 or worse, with all
marks.

aus students.tab

sel LOC in "Berlin Oehna"

sel STID! MARK>2 # selects only students and not exams
gib NAME,LOC, (COURSE,MARK m)m

Result (tab)

Program 10.1.4: Find all students who have only a grade of 1 and at least one grade of 1.
aus students.tab

sel MARKm = {1} # { } are set brackets

Result (tab)

For the evaluation of the condition, for each student the list of his marks is transformed into a set.
Thus, Ernst's set {1 2 1} = {1 2} and Kathe's set {1 1} is equal to {1}. Two sets are equal if every
element of the left side is also on the right side and every element of the right side is on the left side.
In other words, two sets M1 and M2 are equal if 'M1 inmath M2 & M2 inmath M1' holds. If we want
to have all students with exactly two marks 1, then we can use multisets: MARKb = {{1 1}} (b
abbreviates Bag). If the order of the marks is also important, then we can take lists: MARKI = [1 2 1],
etc.

Program 10.1.5: Find all students with all exams, who got a 1 in the algebra course..
aus students.tab

sel STID! COURSE=Algebra & MARK=1

gib STID,NAME, (COURSE,MARK m)m

Result (tab)

Program 10.1.6: Find all students with all exams, who have taken an algebra course and have a 1
(not necessarily in the same course)..

aus students.tab

sel STID! COURSE=Algebra

sel STID! MARK=1

gib STID,NAME, (COURSE,MARK m)m

Result (tab)

Program 10.1.7: Find all students who already have exams in Algebra and Databases..
aus students.tab

sel STID! COURSE=Algebra

sel STID! COURSE=Databases

#sel Algebra Databases in COURSEm is equivalent to both selections
Result (tab)

ntermediate result after the first condition

75

If we would connect both conditions by & (and), this condition "contains" only one EXIST quantifier,
of the kind that no sub tuple exists that satisfies both sub conditions simultaneously. The result
would be empty in any case.

Program 10.1.8: For each student who has completed Algebra, indicate all other courses they have

completed.

aus students.tab

sel STID! COURSE=Algebra # selects students
sel- COURSE! COURSE=Algebra # chooses exams

gib NAME,COURSEb m
Result (tabh)

Program 10.1.9: Find all occurrences of the word Otto.
aus students.tab
sel Otto

Result (tab)

Program 10.1.10: Print from all tuples of the university database (to which | have access) the
(sub)tuples containing the word Apel.

aus students.tab,courses.tab

sel Apel

Result (xml)

So far in this section we have only considered "selection by content", but almost the same
importance has "selection by position". This is not only useful for lists, but can also be used in the
context of "relational applications". We only consider two examples here.

Program 10.1.11: Give for each student from Oehna with exams, the last exam.
aus students.tab
sel LOC=0ehna

sel MARK pos- = 1
gib STID,NAME, (COURSE,MARK m)m
Result (tab)

The pos (pos-) function returns the position number (position number backwards) of the (sub-) item
in the corresponding set. Therefore, MARK pos is the same as COURSE pos.

Program 10.1.12: Give the 2 best exams for the 3 best students. We omit Ulrike because we
cannot calculate an average for her. She has no marks yet.
aus students.tab
sel- NAME=Ulrike
sel MARK=MARK
gib AVGM,NAME, FAC, (MARK,COURSE m)m
AVGM:= MARK! ++:
sel NAME pos < 4
sel MARK pos < 3
rnd 2

Result (tab)

Here, it is sufficient to know that by the gib-clause the students are sorted by AVGM, the exams are
sorted by MARK and AVGM is the average for each student. The gib clause is explained in more detail
in section 10.3.

Although the following query does not require sel or sel-, first and last are still selections. last selects
the last element from each collection. These operations can be used to quickly get a first impression
of the structure and content of a tabment.

Program 10.1.13: Find the last element of each deepest collection of the students file.
examsl.tab,projectsl.tab last
Result (tab)

Program 10.1.14: Find the students with the highest scholarships.

aus students.tab

STIPMAX:=STIP1 max # a new column with one value is created
sel STIP=STIPMAX

Result (tab)

10.2 Calculations (:=)
Program 10.2.1: Calculate the gross values of several prices.
3.18 55.88 17.90 * 1.19

Result (hsgh and tabh)

Program 10.2.2: Calculate the gross values of several prices and leave the entered values in the
output.

NET1 :=3.18 55.88 17.90

GROSS:=NET * 1.19

Result (tab)

Program 10.2.3: Calculate the gross values of several prices.

3.18 55.88 17.90 +% 19

Result (tabh)

Program 10.2.4: Convert all net prices of a small table into gross prices..

<TAB!

ARTICLE, PRICE 1
OttoRAMDB 500
OttoWiki 10
OttoCalc 20
ITAB>

+% 19

Result

19% is added to each number in the table. Text values are not changed by arithmetic operations with
numbers.

Program 10.2.5: Calculate the gross value of each item and the sum of all gross values.

<TAB!

ARTICLE, PRICE,CNT m
OttoRAMDB 500 20
OttoWiki 10 200
OttoCalc 20 4000
ITAB>

TOTAL:=PRICE*CNT +% 19
TOTALSUM:=TOTAL1 ++

Result

Program 10.2.6: Report each computer science student's stipend in dollars.
aus students.tab

sel FAC=Infor

DOL:=STIP*1.02

Result (tab)

Program 10.2.7: Pay each student 100 euros for each of their projects..
aus students.tab

BONUS:= PROJ1 ++1 *100

gib STID,NAME,BONUS m

Result (tab)

Program 10.2.8: Pay each Oehna student an additional bonus based on their mark average.
aus students.tab

sel LOC=0ehna

AVG1l:= MARK1 ++:

BONUS3:=1000 : AVG1

gib STID,NAME,AVG1,BONUS3 m

rnd 2

Result (tab)

With the help of rnd (round) every value of a table is rounded to 2 digits after point (dot). For texts
the value remains unchanged again.

Program 10.2.9: The students of the math faculty get a bonus of 900 euros, the computer
science of 800 euros and all others get 700 euros.
aus students.tab
BONUS:= 900 if FAC=Math !
800 if FAC=Infor!
700

gib STID,NAME,FAC, BONUS m
Result (tab)

Program 10.2.10: Calculate the BMI (body mass index) for each weight of each person
<TAB!
NAME, LENGTH, (AGE, WEIGHT 1)1
Klaus 1.68 18 61

30 65

56 80

61 75
Kathi 1.70 18 55

40 70
ITAB>
BMI:= WEIGHT : LENGTH : LENGTH
rnd 2
Result (tab)

10.3 Restructuring (gib)

The restructuring operation stroke allows to restructure any tabment into another arbitrary tabment
only by specifying the scheme or the TT of the target tabment. Additionally, aggregations, elimination
of duplicates, union, sorting and certain joins can be realized.

Program 10.3.1: lllustrate the collection symbols

aus students.tab

gib FACm,FACb,FACl,FACm-,FACb-,FAC1-,FAC?
Result (tab)

The STID-segments (type: (STID, NAME, LOCATION?, STIP, FAC)) are inserted one after another into
each of the given FAC collections. COURSE and PROJ segments are ignored.

Program 10.3.2: Sort students by FAC and NAME.
aus students.tab
gib FAC,NAMEb m

Result (tabh)

STID segments are inserted first into the FAC level and then deeper into the NAME level, segment by
segment. COURSE and PROJ segments are not touched anymore.

Program 10.3.3: Sort students by FAC and NAME, resulting in a flat table.
aus students.tab

gib FAC,NAME m

Result (tab)

If we replace m with b, the result elements do not change.

Program 10.3.4: Sort the faculties downwards by BUDGET and secondly by
student capacity.

aus facs.tab

gib BUDGET,STUDCAPACITY,FAC m-

Result (tab)

Program 10.3.5: Sort the faculties by budget and additionally by student capacity. (two
independent sortings of one table).

aus facs.tab

gib BUDGET,FAC m-, (STUDCAPACITY,FAC m-)

Result (tab)

Program 10.3.6: Pack each student's exam data by department. (Re-group already grouped data).
aus students.tab
gib FAC, (COURSE,MARK b)m

Result (tab)

Here the STID segments are inserted into the FAC level. They cannot be inserted deeper because they
contain neither COURSE nor MARK values. The corresponding exams bags are then initially always
empty. Then each COURSE segment ((COURSE, MARK)-pair) is extended by its parent STID segment.
These extended segments can be inserted step by step into the corresponding bags (b). The
extended segment has the type: (STID, NAME, LOC?, STIP, FAC, COURSE, MARK). PROJ-segments are
not needed.

Program 10.3.7: (Special selection with gib clause) Give all students, for which a LOC entry exists,
with this entry. Give additionally the given collection for comparison purposes.

aus students.tab

gib NAME,LOC m, (NAME,LOC? m)

Result (tab)

In the first set, the user requests complete pairs. Since no pair exists for Ulrike, she cannot appear in
the first result.

Program 10.3.8: (Selection with gib clause only.) Specify all students with non-empty exam-
collections.

aus students.tab

gib STID,NAME, FAC, COURSE,MARK m

gib STID,NAME,FAC, (COURSE,MARK m)m

Result (tab)

Intermediate result after the first gib-clause:

To get the intermediate result, STID segments are tried to be inserted first. This is not possible
because there is no exams-data on this level. Then again, each COURSE segment is extended by its
first level parent data. This data is inserted exam by exam and student by student.

Program 10.3.9: For each name, output the "first" MARK entry or "null value" if no MARK entry is
present. Print the other collections for comparison purposes.

aus students.tab

gib (NAME,MARK? m), (NAME,MARK m), (NAME,MARK b), (NAME,MARKb m)

Result (tabh)

STID segments can be inserted in the first and last collection, since only names are required.

Program 10.3.10: (Restructuring) Reverse the given structuring. l.e., swap COURSE and NAME.
aus students.tab

gib COURSE, (NAME,MARK b)m

Result (tab)

83

Here, an attempt is first made to insert the STID segments. Since no COURSE attribute exists, they
cannot be inserted. Therefore, the extended COURSE segments are inserted first at the COURSE level
and then at the NAME level.

Program 10.3.11: (Restructuring with additional tags) Reverse the given structuring by changing
COURSE from inner to outer collection and NAME from outer to inner. Create additional tuple and
sub-tuple tags.

aus students.tab

gib COURSES

COURSES = COURSETUPLEm
COURSETUPLE = COURSE,EXAMSTUPLEb
EXAMSTUPLE = NAME,MARK

Result (ment)

84

Now, we want to illustrate the set-theoretic operations union, intersection, and set-difference. Since
the STID column in students.tab is already a union, we illustrate the union with the files exams1 and
projectsl.

Program 10.3.12: Construct the union of two files, where each value of each file should appear in
the result.
aus examsl.tab,projectsl.tab # a pair of tables

gib STIDb
Result (tabh)

If we replace b with m in the gib statement, duplicates are eliminated.
Result

If we want to know from which file each STID comes from, we can add corresponding information

aus examsl.tab,projectsl.tab # a pair of tables
gib STID,COURSE?,PROJ? b

Result (tab)

Program 10.3.13: Construct the intersection of two files with different schemas.
aus examsl.tab,projectsl.tab

gib STID,COURSE?,PROJ? m

gib STID,COURSE,PROJ m

This restructuring can also be realized through selections
gib STIDm

Result (tabh)

Intermediate result after the first gib statement

86

Program 10.3.14: Set difference: Specify all STIDs of exams1.tab that are not contained in
projectsl.tab.

aus examsl.tab

rename STID ! STUDID

,projectsl.tab # in turn results in a tuple (pair) of tables

sel- STUDID in STIDm

gib STUDIDm

Result (tab)

Program 10.3.15: query 10.3.14, but with nested query

aus examsl.tab

sel- STID in begin projectsl.tab;; gib STIDm end
gib STIDm

Result (tab)

Program 10.3.16: (Grouping with Aggregation) Calculate the number of students and the number
for each faculty. Sort the students by FAC and NAME.
aus students.tab
gib CNT, (FAC,CNT, (NAME,STID b)m)
CNT:= STID! ++1

Result (tab)

Program 10.3.17: (Restructuring with Aggregation) Give the total of all scholarships and the total
for each course. Sort the records by course.
aus students.tab
gib SU, (COURSE,SU m)
SU:= STIP ! ++
Result (tab)

It is interesting to note here that the “sum” of the inner SU values is generally larger than the outer
SU value. This is due to the fact that a particular course usually occurs in more than one student
record.

Program 10.3.18: Search the name of the student with ID 2222.
aus students.tab

sel STID = 2222

gib NAME

Result (tab)

NAME
Sophia

Program 10.3.19: Divide the students of the all faculties except sport into independent tables.
aus students.tab
sel- Sport
gib FAC, (NAME,LOC? m)m
cut 1 # the second argument says that only one faculty is desired
for each sub table
Result (tab)

FAC ,(NAME ,LOC? m) 1,(FAC ,(NAME ,LOC? m) 1),(FAC ,(NAME ,LOC? m) 1)

Art Kathe Gerwisch Infor Clara Oehna Math Ernst Oehna
Ulrike Sophia Berlin

The concept of hierarchical path is important for all operations. Its definition is based on "narrow"
schemes. All collection symbols except '?' are real collection symbols.

A schema s is narrow if for any 2 real collections c and c¢' holds, either c is contained in c' or c' is
contained in c. Fields f1 and f2 of a schema s are on a hierarchical path (HP for short) with respect to
s if the schema formed by forgetting all fields except fland f2 is narrow.

X,Ym,Zm m is not narrow, but X,Y?,Z? m is. PROJ and COURSE are in

NAME, (COURSE,MARK m),(PROJ,HOURS m)m, not on a hierarchical path; unlike PROJm and COURSE.
This is visible in the graphical representation of the schema.

m
(NAME, m, m)

I |
(COURSE,MARK) (PROJ,HOURS)

Program 10.3.20: Put simply two fields that are not on one HP onto one HP
aus students.tab

gib COURSE,PROJ m # is empty

Result (tabh)

COURSE, PROJ m

Program 10.3.21: Sort and group the students, who have taken an Algebra COURSE by their
corresponding marks and sort them by name and print all their projects.

aus students.tab

sel COURSE=Algebra

gib MARK, (NAME, (PROJ,HOURS m)b) m

88

Result (tab)

Although PROJ and MARK are not on one HP, the project collection is not empty. This is possible,
because the operation strip is applied, if the target scheme contains fields, which are not on a
hierarchical path. Strip generates a table of type:

STID ,NAME ,LOC ,STIP ,FAC ,COURSE ,MARK ,(PROJ ,HOURS m) m

Here, MARK and COURSE are on a HP.

10.4 Joining by nested queries

The horizontal merging or joining of the information of two tables is called a "join". In our approach,
joining two flat tables is not necessarily a flat table. From point of view of power we do not need an
additional join operation. Meaningful structures can be created with assignments (:=).

Program 10.4.1: “Add” exams1 data to students1 data.
aus studentsl.tab

:= examsl.tab at FAC

Initial part of the result (tab)

The result contains 6%12=72 sub tuples. To get the 12 desired sub tuples, we need to add a condition:

89

Program 10.4.2: Add all corresponding exams1 records to each students1 record ("Structured left
outer join").

aus studentsl.tab

:=examsl.tab at FAC

sel COURSE! STUDENTS1/STID=EXAMS1/STID

Result (tab)

If we want to omit Ulrike, we just have to omit the level identifier 'COURSE:'. Each tabment with the
name xyz.tab has the outermost tag XYZ. Therefore, the above extension results in the following TT:

TT (tabment type of the result)

This TT allows accurate specification of column names despite duplicate name occurrences.
EXAMS1/COURSE is the same as COURSE, because COURSE appears only once on the right side of the
TT.

In addition, STUDENTS1 is on the right side of EXAMS, so the tag path STUDENTS1/EXAMS/COURSE is
also identical to COURSE. However, the "tag path" STID does not specify exactly, since it occurs twice.
STUDENTS1/STID is the student identifier of the studentsl table and
EXAMS1/STID=STUDENTS1/EXAMS1/STID of the exam table.

In an access path X/Y/Z, Z must occur on the right side of Y and Y must occur on the right side of X in
the TT. X is the paternal marker of Y and Y is the paternal marker of Z. There is no tag between X and
Y and Y and Z (in the xml- or ment-representation). If we don't know all the intermediate tags, we can
also use the X//Z notation. In this case, there can be any number of tags between X and Z. That is,
this tag path corresponds to a complete tag path X/X1/X2/.../Xn/Z for matching tags X1,...,Xn.
Therefore STUDENTS1//COURSE describes COURSE in the same way as the full tag path
STUDENTS1/EXAMS1/COURSE.

Program 10.4.3: Program with nested query
aus studentsl.tab
EXAMS:=begin aus examsl.tab;;sel STID=STID~ end at FAC

90

Result (tab)

Nested queries are contained in begin and end. If we want to refer to a column name outside the
inner query, we must add a "~". Therefore STID™ is the identifier of STID of students1.

Program 10.4.4: Attempts to generate the given student table from three given flat relations..

PR:=begin aus
sel
gib

EX:=begin aus
sel
gib

aus studentsi.

tab

projectsl.tab

STID=STID~

PROJ,HOURS m end at FAC
examsl.tab

STID=STID~

COURSE,MARK m end at FAC

Result (tab)

The result corresponds to students.tab.

Program 10.4.5: Generate a table with three nested levels.

EX:=begin aus

aus facs.tab
proj- STUDCAPACITY

ST:=begin aus
sel FAC=
proj- FAC

sel STID=STID~
proj- STID end at STIP

studentsl.tab
FAC~

end at BUDGET
examsl.tab

Result (tab)

91

If we want to delete only a few columns, we can use the proj- (projection) clause instead of a gib
clause. We notice that we get a structure with nesting depth 3, although the deepest nesting level in
the program is 2.

10.5 A user-friendly “join” (ext ext2)

Through Example 10.3.20, it has become clear that the problem of loading data onto an HP when it is
not yet on an HP in the source structure can be solved in some situations with an additional gib
statement without using the Cartesian product. This problem is even more important when we
consider a given relational database with flat structures. In a tuple of such files, nothing is on an HP
except the fields that are in the same table. Therefore, an ordinary gib statement is not very
expressive. Relational systems solve this problem with joins. But the join is related to the Cartesian
product. Moreover, join-conditions have to be used. In [Gol08] experiments with students were
described. They showed that missing join conditions are the most common semantic SQL error. If we
use both constructs of this section, the join conditions generally do not need to be written. In the
first part of this section, we present some typical queries for ext (extension). It is easy to use ext, but
its definition seems to be a bit more complicated than its application.

Program 10.5.1: Give the very good exams and the time-intensive projects for all students who do
not live in Gerwisch, who completed a COURSE with a 1, and who have the time-intensive projects.
Group the students by place of residence.

aus studentsl.tab ext examsl.tab ext projectsl.tab

sel- LOC=Gerwisch

sel MARK=1

sel HOURS>2

gib LOC, (NAME, (COURSE,MARK m), (PROJ,HOURS m)b)m

Result (tab)

Program 10.5.2: Group and sort student names with bad grades by faculty and output the
students' bad courses. Omit STUDCAPACITY.

92

aus facs.tab,studentsl.tab,examsl.tab ext2
sel MARK>2
proj- STUDCAPACITY

Result (tab)

Program 10.5.3: Give out all students from Oehna with dean, courses and projects..
aus facs.tab ext students.tab

sel LOC=0ehna

gib STID,NAME, FAC,DEAN,COURSEm,PROJm m

Result (tab)

Program 10.5.4: Add the teacher column to the courses of the students of the computer science
faculty.

aus students.tab ext courses.tab

sel FAC=Infor

gib NAME,LOC?, (COURSE, TEACHER,MARK m),PROJm m

Result (tab)

Program 10.5.5: Find all students from large faculties who have a good mark in algebra.
FAC ,(LOC ,NAMEb m) m . Structure students by FAC and LOC, and sort them by
NAME.

aus facs.tab,studentsl.tab,examsl.tab ext2

sel STUDCAPACITY>300

sel MARK<4 & COURSE=Algebra

gib FAC, (LOC,NAMEb m)m

Result (tab)

11 Special Restructuring Operations
11.1 The Bill of Material Problem (BOM) (onrs)

The onrs operation was introduced to provide o++o numbers for solving BOM problems. The given
tabment must be of type

X1,...,Xn,(Y1, ... Yk m) m

where X1 and Y1 are the keys of the respective collections. BOM-problems occur often in industry.
Surely, not only very large data sets have to be handled. Below, it can be seen that the whole BOM is
stored in one structured table. Both collections of the input-table are sets. That means we have direct
access to each tuple and sub-tuple, if the part or part-number is given. In the first step otto-numbers
are generated. We shall see that these numbers are also important for structured texts like books or
the Wikipedia. The operation nextonr is similar to next, but it ends already, if an ottonr of the same or
smaller length follows. The rest is realized by gib.

Program 11.1.1: Print the BOM of the car Wartburg.
<TAB!
PART, PROPERTY, (SUBPART, COUNT m) m
Bushing cylindrical
Engine heavy Piston 6
Screw 8
Piston 1light Bushing 1
PistonRing 2
Rim smooth
Trabant modern Body 1
Engine 1
Wheel 4
Wartburg fast Body 1
Climate 1
Engine 1
Wheel 4
Wheel round Rim 1
Screw 5
Tire 1
ITAB>
onrs Wartburg
COUNTOTTO:= COUNT nextonr
COUNTOTTO pred *COUNT at COUNT
gib SUBPART,TOTAL m TOTAL:= COUNTOTTO!++
Result (tab)

Intermediate result of line “onrs Wartburg” (tab)

94

Intermediate result without last line (tab)

It can be seen that all direct subparts from the Wartburg are assigned an otto number, which
consists of only one number. The engine is one such part. The direct lower parts of the engine
(screw and piston) are assigned otto numbers with two digits. Similarly, the direct
lower parts of the piston are assigned otto numbers with 3 digits. Thus, a non-recursive
set without redundancy is formed for the Golf. The table recursion could now be applied to this set
to calculate the multiplicity of containing a subpart.

Beside the input tabment onrs needs one or more parts (here only Wartburg) for which the ONR
resolution is to be made. Accordingly, the program line

onrs [Wartburg Trabant]

is correct and reasonable.

11.2 Transposing Matrices and structured Tables

Transposing data is well known from matrices, but it seems to be useful also for structured tables.
For example, if a computer screen or a sheet of paper is not wide enough or too small, then often
appropriate transpositions can help.

Program 11.2.1: Transpose a simple matrix with column names.
<TAB!

X1,X2 1

1 2

3 4

5 6

ITAB>

transpose

=:¥1,..,Y3 1

Final result:

Intermediate result of the above subprogram without the last program line

95

(OCaml-Term)

It is also possible to apply at first the operation untagall to the given table and then transpose. The
result will be the same.

Now, we consider a table of marks, where the list of marks appears already in a transposed way,
because the list of marks is arranged horizontally, but from logical point are they vertically arranged.
To save further space a transposition of the (SUBJECT,MARKI m) — collections could be useful.

marks.tabh

Program 11.2.2: Arrange each inner set horizontally.
marks.tabh

tag SUBTABLE ! (SUBJECT,MARK1 m)
SUBTABLE::= SUBTABLE transpose metal
Result:

Vo]
(o))

Clara
Ernst
Sophia

The above result is a problem for o++0, because it is not an ordinary table. The second sub table has
4 components and the others only three. Therefore, for example, the tab-representations do not
work. By the additional line

gib NAME,CHINESE1,MATHS1,PHYSICS1,LATINL m

the problem can be solved. In this case each student has an empty or non-empty LATIN-collection.
metal will be clear in the following example.

Program 11.2.3: Arrange each inner set horizontally without an
additional tag.

marks.tabh

:= NAME tup nth 2 transpose metal

gib NAME,CHINESE1,MATHS1,PHYSICS1,LATIN1 m

Final result:

NAME, CHINESE1l, MATHS1, PHYSICS1, LATINL m

Clara 24353121311
Ernst 1214 243 31
Sophia 12312124231
Sub program

marks.tabh

:= NAME tup nth 2 transpose
Intermediate result of the above subprogram (webh)

1 126
4

INAME] (SUBJECT, SUBJECT, SUBJECT 1) (SUBJECT, MARKL
SuBJECT [suBdecT [suBdecT ||sumdEcT [maRK
Chinese Maths Physics Chinese|2 4 3
243531213 (11 53
Maths 121
3
Physics|1 1

Ernst

Chinese|Latin |[Maths |Physics|||Chinese|1 2 1

1214126 243 311 4
Latin 126

Maths 243
Physics (3 1 1

Chinese Maths Physics Chinese |1 2 3
123121242 (314 12
Maths 124
2
Physics (3 1 4

97

By metal the (primary) data of the first element are taken as metadata. The following gib statement
omits the SUBJECT and MARK columns and introduces a column LATIN for Clara and Sophia. Without
this additional column, the data cannot be represented, for example in tab or tabh-format.

Program 11.2.4: Arrange the result of the previous query vertically.

<TABH!

NAME, CHINESE1l, MATHS1, PHYSICS1, LATINl m

Clara 24353121311

Ernst 1 2 1 4 243 311

Sophia 123121242314

I TABH>

SUBJECT,MARKL 1:=NAME tup nths (2 .. 5)

transpose metaprim

gib NAME, (SUBJECT,MARK1 m)m

SUBJECT: :=SUBJECT subtext 1!1 + (SUBJECT
subtext 2!(SUBJECT ++1- 1) lowercase)

126

Final result (nearly equal to marks.tabh)

Example for the operation metaprim
MARK1 :=12 1 3

metaprim

result (tab)

metaprim is only defined for one column tables.

The transpose operation can be used especially to convert tuples or sub tuples into lists. This
has the advantage that list operations, such as selection, can be applied to these lists, too.
The following file was obtained from an EXCEL table.

Part of a table climate_radiation.hsq in tab-format

climate_radiation has the scheme:
ID,COUNTRY,WIDTH, LENGTH, HEIGHT?, JAN, FEB,MRZ, APR,MAY, JUN, JUL, AUG,
SEP, OCT,NOV,DEC 1

It contains 17 columns. You can reduce the number of columns to 7 in the following way:

This flat table is transformed into a structured one, in which the radiations are arranged vertically
and the months are output in an additional column:

Program 11.2.5: Transpose the radiations vertically.

climate_radiation.hsq

MON, RADIATION 1:= JAN seg transpose metaprim

gib ID,LAND,WIDTH,LENGTH,HEIGHT, (MON,RADIATION 1) 1

Result (tab)

Now you can easily create statistics about RADIATION or easily select specific months, etc.

Now, we show a transposition within a more complex given tabment. Here the elementary tag whose
values are to become column names must be specified as the second input value.

Program 11.2.6: Arrange the subjects horizontally.

<TABH!

NAME , LOC, BORN, CLASS?, (HOBBY, HOURS 1), (SUBJECT,MARK1 1)1

Clara Oehna 12.6.11 4 Riding 5 Math 12
Chess 1 German 3 11

Claudia Dallgow 14.9.17 Chinese 5

99

Food 4
Sophia Dallgow 7.9.13 2 Painting 5 Math 1211
Wheelturning 4 German 1 2 1
6

Chinese
| TABH>
tag X!(SUBJECT,MARK1 1)

X::=X transpose metal
gib NAME,LOC,BORN,CLASS?, (HOBBY,HOURS 1),MATH1,GERMANL m

Result (tabh)

100

12 Some operations for text processing with o++o (+ -+ cut satzl)
The + symbol can also be used to concatenate and manipulate text. Here, too, a small difference is
made between TEXT and WORT:

Program 12.1: There are small differences between WORT and TEXT concatenation

WORDRESULT:=otto + " o++0"
TEXTRESULT:=otto text + " o++0"

Result (tab)

WORDRESULT, TEXTRESULT

otto_o++o0 otto o++o0

Since the first input value of WORDRESULT is a word, the result is also of type WORT. The same
applies to the second case, where the result is a text. Words cannot contain spaces.

-+text is an operation with 3 input values. The TT of the first input value is retained or WORT is
changed to TEXT, if a blank is inserted. Each occurrence of the second input value is replaced by the
third.

Program 12.2: -+text example

<TAB!

X, Y1

1 Today is Monday.

2 Yesterday is Sunday.

I TAB>

-+text "is S" ! "was S"
Result (tab)

XY 1

1 Today is Monday.
2 Yesterday was Sunday.

Program 12.3: text operations + - -+text

TEXTPLUS:="Today is a beautiful " + day
TEXTMINUS:=Thunmmder_weather - "m"
TEXTMINUSPLUS:="Today is a beaoetiful day." -+text oe ! u

Result (tab)

TEXTPLUS, TEXTMINUS, TEXTMINUSPLUS

Today is a beautiful day Thunder_weather Today is a beautiful day.

Program 12.4: "Coding" a text.

"Today is Tuesday. Tomorrow is Wednesday."
cut 1
sel- TEXT inmath ["a" "e" "i" "o" "u"]
TEXT::="t" if TEXT="m"!

"m" if TEXT="t"!

TEXT
++text

Result (tab)

TEXT

mdy s msdy. mtrrw s Wdnsdy.

101

Program 12.5: Eliminate the dot from numbers in a list.
X1:=3 *1 5 ~ (1.1 ..6)

Y:= X cut 1

sel- WORT= "."

Y::=Y ++text

Result (tab)

A function for sentences (satzl) has been implemented, which so far uses a relatively rudimentary
end-of-sentence detection.

Program 12.6: Disassemble a text into a list of sentences.
"Today is a beautiful day. Tomorrow, I will go to buy something."
satzl

Result (tab)

102

13 Format with o++0 ('3 '4 norm3e norm3m mant rnd)

Analogous to SQL, o++o0 had initially limited itself to content problems. However, o++o uses much
richer structures than SQL. Formatting was then taken over from SVG. Thus, one could frame a table,
write letters bold or colored, etc. . Now we have implemented more possibilities. Numbers with a
larger mantissa are hard to read if they are not grouped. Since many different variants are used for
number representations in the world, we have chosen representations that do not collide with the
existing ones as much as possible and are still better readable.

Grouping of digit sequences ('3 '4)

Following the Swiss model, o++0 uses the apostrophe to make numbers better readable. Blocks of
three are the most important along with blocks of four.

Program 13.1: Improve readability of several numbers by grouping them.

12345678, 1234567.87654 '3 ;1234567890 '4

Result (tab)

12'345'678 1'234'567.876'54 12'3456'7890

Such representations are created by the unary operations '3 and '4. The user can also set the
apostrophe arbitrarily, for example to make telephone numbers more readable:

0176'84'208'408

Internationally, both the comma and the point (dot) are used as decimal separators and the point
and the comma are also used for grouping. We hope to eliminate this inconsistency through these
arrangements.

Exponent first notation (norm10m) and norm10e

PZAHL numbers with long mantissa are not to be grasped fast enough, since the more substantial
exponent is indicated only at the end of the string. Furthermore, people think in thousands, millions,
billions, An exponent 7 or 8 must be recognized as first 10- or 100-million. This way of thinking
reflects o++o by allowing only multiples of 3 as exponent. Furthermore, the exponents can also be
given first:

6m12.345 (12 million ...)
9m123.4 (123 billion ...)

the old mantissa first notation knows o++o nevertheless. However here also multiples of 3 are used
as exponent:

12.3456789¢e6 (12 million ...)
123.456789€9 (123 billion ...)

These formatting's can be generated by the unary operations norm3m (for the representation with
m) and norm3e (for the latter). The 3 expresses that the exponent is a multiple of 3.

Program 13.2: Improve the readability of numbers by normalizing the exponents.
X:=12345678.9 norm3m
Y:=12345678.9 norm3e

103

Result (tab)

The reduction of the digits (mant)

Most people don't care about the many decimal places when a calculator outputs the square root of
2 or 3 with more than 10 digits. The overload of irrelevant information makes it harder for us to see
what is important. Therefore, omitting unnecessary digits (information) is important.

The binary function mant realizes this and converts the result immediately into the m-
representation. l.e. the operation norm3m is applied at the same time. The second argument of mant
specifies the number of digits desired.

Program 13.3: Reduce the number of digits to four.
12345678.98765 , 1234567890

mant 4

Result (web)

104

14 Structured diagrams

With o++0 you can easily create diagrams. Once you have created an o++0 program, you can use the
diagram button to open a new browser window that offers a choice of different diagram types.
Column charts are certainly the most commonly used. The following rules apply to diagrams:

1. TEXTs are converted to words by the system by replacing each space with an underscore.

2. Numeric columns (ZAHL, PZAHL, RATIO) are displayed as columns.

3. The first word column of each hierarchy level is used as the signature for the columns. The
other word columns of the level are ignored. If no word column exists, a dash acts as a
signature.

4. If no RGB values are given, the system sets default colors. If the user wants to choose the
colors, each numeric column must have an RGB column in the same level or higher. If an RGB
value is placed directly in front of a number column, it determines the color of the column.

5. If the table to be displayed starts, with the column name TITEL, the content of the column is
interpreted as the heading of the entire chart.

We already know that a simple list of numbers is an o++o program that can be represented as a
diagram. If there is one more word in each row, it serves as a signature:

Program 14.1: Create a column chart with signatures

<TAB!

NAME , AVERAGE 1
Ernst 1.7

Clara 1.3
Sophia 1.33
Ulrike 2.3
Claudia 2.1

Kathe 2.4

ITAB>

Result (struc.diagram- bar)

105

NAMEAVERAGE |

AVERAGE

Ernst Clara Sophia Ulrike Claudia Kathe
NAME

Program 14.2: Sort the columns with signatures by size

<TAB!

NAME, AVG 1

Ernst 1

Clara 1

Sophia 1

Ulrike 2.
2
2

Claudia
Kathe
ITAB>
gib AVG,NAME m

Result (diagram - columns)

106

AVG,NAME m

AVG

Clara Sophia Emst Claudia Ulrike Kathe
NAME

The following diagrams use the below table of towers.

towers.tab

Program 14.3: Represent each tower by a column
towers.tab
TOWER: :=TOWER subtext 1!12 # By this shortening of the name are also
in the bar chart all names at the same time

107

visible; for space reasons, otherwise
sometimes some are hidden

Result (diagram columns)

TOWER,CITY.COUNTRY,HEIGHT |
900

800

700

600

500

HEIGHT

400

300

200

100

Program 14.4: Represent each tower by a bar and output the bars country by country. Countries
with the highest towers are to be output first (sort downwards). For each country, sort the towers
upwards. The countries are to be visually marked off.

aus towers.tab

gib MAX, COUNTRY, (HEIGHT,CITY m) m- MAX:=HEIGHT !max

COUNTRY: : =COUNTRY wort + "---------mmmmmm e e - - " subtext 1!
30

RGBDARKGREEN:=darkgreen leftat MAX

RGBGREEN:=green leftat HEIGHT

upper part of the result (struc.diagram bar)

108

COUNTRY CITY

RGBD;

VAR:
Dubai
China.
Shanghai
Beijing
Guangzhou
Tainjin
Shenzen
Shanghai
Saudi_Arabia
Mecca
South_Korea:

Seoul
USAmmmerm e
New_York

Taiwan:;
Taipei

Russia.
Saint_Petersburg

Vietnam

Ho_Chi_Minh_City

Malaysia.

Kuala_Lumpur

GDR:

Berlin

,MAX,COUNTRY(

109

| HEIGHTCITY m) m-

400 500 600
MAX HEIGHT

800

90

weights.tabh

Program 14.5: Calculate BMI averages for all adults, for each age group, and overall. To realize the
first 5 lines EXCEL needs more than 6 worksheets.

aus weights.tabh

sel NAME! AGE>20

gib BMI, (AGE,BMI, (NAME,BMI m) m)
BMI:=WEIGHT:LENGTH:LENGTH ! ++:

rnd 2

=: BMI,AGE,BMI2,NAME,BMI3

AGE: : =AGE wort

RGBRED :=red leftat BMI
RGBDARKGREEN:=darkgreen leftat BMI2
RGBGREEN :=green leftat BMI3

+ "per person and age (green

TITEL:="BMI averages total (red), per AGE (dark green), "
)" leftat RGBRED

Result (struc.diagram bars)

110

BMI averages total (red), per AGE (dark green), per person and age (green)

30

25

20

15

BMI2 BMI3

10

B

18 Bert Kathi Klaus 30 Bert Klaus 40 Kathi Rolf 61 Klaus

Program 14.6: Compare the weights, lengths and BMI of all persons. Sort the persons by BMI.

aus weights.tabh
TITEL:="BMI in cyan, weight in kg (light blue) and length in dm (orange)"
gib TITEL, (BMI,NAME,WEIGHTAVG,LENGTH m)
WEIGHTAVG:=WEIGHT ! ++:
BMI:=WEIGHT:LENGTH:LENGTH ! ++:
LENGTH: : =LENGTH*10
AGE: :=AGE wort
RGBLIGHTBLUE:=1ightblue leftat WEIGHTAVG
RGBORANGE :=orange leftat LENGTH
RGBCYAN :=cyan leftat BMI

Result (struct.diagram bars)

111

BMI in cyan, weight in kg (light blue) and length in dm (orange)

80

BMI WEIGHTAVG LENGTH

Walleri Victoria Kathi Rolf Bert Klaus
NAME

Program 14.7: Represent 2 functions by bar graphs.
X1:=0 ...10!0.05

SINE:=X sin

ROOT:=X sqgrt

X::=X wort

RGB:=violet leftat SINE

RGB:=beige 1leftat ROOT

Result (struc.diagram bars)

112

X,RGB,SINE,RGB,ROOTI
35

25

15

A i
"HHHH | Il

DU I JENTG TSR IR 98 JRSEUR, 0D BRI I SR 0 N R, P R TR LI LI, K T S SR RS

SINE ROOT

o
2

X

elections.tab

113

Program 14.8: Visualize 4 election results and calculate the average number of votes of the 4
elections.

elections.tab
YEAR: :=YEAR wort
PARTY: :=Linke if PARTY="PDS" ! PARTY # the PDS was renamed
gib TOTAL,PARTY m-, (YEAR, (SEATS,PARTY m-)m)
TOTAL : =SEATS! ++:
gib TOTAL,PARTY 1, (YEAR, (SEATS,PARTY 1)1)
RGB:=red if PARTY="SPD" !
yellow if PARTY="FDP" !
darkred if PARTY=Linke !
blue if PARTY=AfD !
black if PARTY=Union !
green if PARTY=Grine !
grey leftat TOTAL SEATS

Result (struc.diagram bars)

(RGB,TOTAL,PARTY I),(YEAR,(RGB,SEATS PARTY I} I)

250
200
| ‘ ‘ |
1) |
QO D\\

00“ L ® @Q $° W & S L L& AP \\\\a\“ L & & g O A ® & ® &

TOTAL SEATS

<

PARTY YEAR PARTY

Result without RGB values (tab)
TOTAL ,PARTY 1, (YEAR ,(SEATS ,PARTY 1) 1)

231.75 Union 1998 298 SPD
200.75 SPD 245 Union
87. AfD 47 Grine
77. FDP 43 FDP
75. Griine 36 Linke
55. Linke 2009 239 Union
2. Sonst 146 SPD
93 FDP
76 Linke
68 Griine

2017 246 Union

114

states7.tab

Program 14.9: Sort and visualize the states by population per area and by population. (Visualize 2
independent tables.)

states7.tab

INHABITANTSPERKM2 :=INHABITANTS * 1'000 : AREA

gib INHABITANTSPERKM2,STATE m- , (INHABITANTS,STATE m-)
'3

rnd O

Result (struc.diagram bar)

115

(INHABITANTSPERKM2,STATE m-),(INHABITANTS,STATE m-)
18000

16000

14000

12000

10000

8000

6000

INHABITANTSPERKM2 INHABITANTS

4000

2000

Program 14.10: Sort and visualize the states by population per area and by population, such that
each states gets the same color in each of the diagrams. Divide the tables by additional space.

states7.tab
DEBTSPERHEAD:=DEBTS : INHABITANTS *1'000'000
MIDDLE:=Middle
gib DEBTSPERHEAD,SHORT m- ,MIDDLE, (INHABITANTS,SHORT m-)
gib DEBTSPERHEAD,SHORT 1 ,MIDDLE, (INHABITANTS,SHORT 1)
RGB:= red if SHORT="NRW" !

blue if SHORT="BW" !

yellow if SHORT="SN" !

green if SHORT="SL" !

violet if SHORT="TH" |

tomato if SHORT="HB" !

cyan leftat DEBTSPERHEAD INHABITANTS

Result (struc.diagram bars)

116

INHABITANTS

DEBTSPERHEAD

45000

40000

35000

30000

25000

20000

15000

10000

5000

HB

SL

NRW

BW

(RGB,DEBTSPERHEAD,SHORT I),MIDDLE,(RGB,INHABITANTS, SHORT)

TH sT SN Middle NRW BW
SHORT MIDDLE SHORT

SN

ST

TH

SL

HB

117

15 Multiple diagrams

In the previous chapter we saw that a structured table can usually also be represented as a
structured chart. Program 14.7 demonstrates that this also works for larger tables. However, pie
charts quickly become confusing if a circle represents too many numbers.

Structured tables usually contain several sub-tables. These naturally contain fewer elements than the
source table, so in this chapter each sub-table will be represented by an own diagram. With multiple
diagrams, structured tables are visualized even more directly than with structured diagrams.

Program 15.1: Sort and visualize the states by population per square kilometer and by population.
(Visualize 2 independent tables.) (Program 14.9)

states7.tab

INHABITANTSPERKM2 :=INHABITANTS * 1'000 : AREA

gib INHABITANTSPERKM2,STATE m- , (INHABITANTS,STATE m-)

'3
rnd O
Result (2 pie charts)
TABMENT.INHABITANTSPERKM2 TABMENT.INHABITANTS
. Bremen l Nordrhein-Westfalen
. Nordrhein-Westfalen . Baden-Wiirttemberg
Saarland Sachsen
Baden-Wiirttemberg Sachsen-Anhalt
. Sachsen . Thiiringen
Thiiringen Saarland
. Sachsen-Anhalt l Bremen
Result (2 bar charts)
B Bremen TABMENT.INHABITANTSPERKM2 Il Nordrhein-Westfalen TABMENTINHABITANTS
. Nordrhein-Westfalen 2.000 . Baden-Wiirttemberg 20.000
Saarland 1.000 Sachsen 10.000 .
Baden-Wiirttemberg 0 | — —_ Sachsen-Anhalt 0 - -
. o N 0 o
. Sachsen o RS @\3‘@ C“%e(\ et . Thiiringen wﬂ?ﬁw\? ?@(X\e?» v\\)‘\‘\q? %\3‘“3
Thiiringen ® El e 6\52“’ Saarland C‘«\a\“’
o -
. Sachsen-Anhalt ° . Bremen we

In program 14.9 the columns for inhabitants per square kilometer are much smaller than the
columns for inhabitants. This problem disappears above with multiple charts.

Program 15.2: as 14.10

elections.tab

YEAR: :=YEAR wort

PARTY::=Linke if PARTY="PDS" ! PARTY

gib TOTAL,PARTY m-, (YEAR, (SEATS,PARTY m-)m) TOTAL:=SEATS ! ++

Result (5 bar charts)

118

. Union

DEFAULT_TITLE.TOTAL 1998.SEATS
.SPD 1.000 .SPD 300
P Wunion
[Griine Griine
. 100
Prike | - mu_ [Wrop
[lam & P @R & Prinke © N
e SN <° PD Union Griine FDP Linke

. Sonst

2000.SEATS
P Union 250

.SPD 200

150

F]_)P 100
o B

B Grine ©
Union Linke Grine

.Union
[B3y
AfD 200
BFDP 100 l
.Linke 0 - - -
.Gn‘ine

. Sonst

= SPD 2021.SEATS
Union

Griine >
[rppP I I
B . M

Linke
=Sonst & o @v@ E’o‘\s

2017.SEATS

G 0 © (,0? @ &
Y A% [c) S

119

. Union
[Ray)
FDP
. Griine
. Linke
AfD

. Sonst

DEFAULT_TITLE.TOTAL

A

| Bay)

. Union

Hrop

. Linke

. Union
Bsep
FDP
. Linke
. Griine

. Union

[Ray)

AfD

rop
. Linke
Griine

. Sonst

| Bay
. Union
Griine
[rop
Bam
Linke

. Sonst

1998.SEATS

i‘

2009.SEATS

N

2017.SEATS

2021.SEATS

Note the difference between the above program and program 14.8. In 14.8 the sum of the four years
is calculated and here the average is calculated. Therefore, the order of the parties in the total
balance differs. The order does not change even if an "average" is calculated by division by 4. Here
you can see how important it is that the end-user must be able to read the program in order to

correctly understand the information received.

120

16 Image generation

Since o++0 allows to generate numbers in a simple way, one can also generate whole
images. For example, XI:= 0 .. 4 generates the numbers 0 1 2 3 4. You can assign diagrams to
these numbers, but to generate an image with o++0 you need a list or a set of number pairs
(X,Y). The point gets a color if there is an RGB (RED,GREEN,BLUE)-triple before the X or
before the Y value:

(X, RGB, Y)

For RGB values o++0 has 3 display options.

English color names:

red, silver, cyan, ...

Triples of integers between 0 and 255:

(255,0,0) (=red), (192,192,192) (=silver), (0,255,255) (=cyan)

Number triples between 0 and 1:

(1.,0.,0.) (=rot),(0.752941,0.752941;0.752941)(=silver),(0.,1.,1.) (=cyan)

We start with 2 functions, but initially define them only for 10 X values. You have to look
closely to see the points:

Program 16.1: Create 10 points twice.

X1l:=0 ..9
Y :=X sin
Y0 :=X*0

Result (image - new window)

By introducing a step size of 0.1, the number of points is increased tenfold.

Program 16.2: Create 100 points twice.

Xl:= 90 ...910.1
Y:=X sin
Y0 :=X*0

Result (image - new window)

121

Now we add another 0 to the step size.

Program 16.3: Create 1000 points twice.

X1l:=0 ...9!0.01
Y :=X sin
YO :=X*0

Result (image - new window)

The sine function now becomes red and the X-axis green. The fact that a column name
occurs twice (RGB) does not cause any problems at this point.

Program 16.4: Display 2 functions in color.

Xl:= 90 ...9!9.01

Y :=X sin

YO :=X*0

RGB:=red leftat Y
RGB:=green leftat YO

Result (image - new window)

— —

-

The fact that it is also possible to create "full images" is first shown by the German flag. You
can see that all points that follow a color value are output in this color. Thus, each of the
color values has to occur only once for generation of the below the German flag. The term
pixel has lost its meaning here or must be redefined, because we allow structured tables.

Program 16.5: Generate the German flag
Xl:= 0 ...910.01

Yl:=0 ...2!0.01 at X

=: $RECTANGLE

aus RGB:=gold

, $RECTANGLE

RGB:=red

,$RECTANGLE+(0,2)
RGB:=black

, SRECTANGLE+(9,4)

Result (image + new window)

122

Program 16.6: Design a bikini. Color the functions mirrored between sine and sine mirrored.

Xl:=pi * -1 ...pil@.005
Y1l:=X sin abs *-1 ...(X sin abs)! 0.005
RGB:= 0.1+ (X+Y sin abs),0.2,0.4 leftat Y

Result (image + new window)

123

Appendix A: List of operations and keywords of o++0
Most of the known operations have an arity. The square root, for example, requires only one input
value or argument - this is usually a number. Therefore, sgrt is unary and has the arity 1. In the o++o0
data model, the argument of sqrt can also be a list of numbers. Then the square root is taken from
each of the numbers. The list is then considered to be one input value, even though it may contain
ten or even ten thousand numbers. That is, sqrt remains unary even in this case.

In the o++0 syntax the sqrt symbol must follow the argument (postfix). This means that no additional
parentheses are required. Itis not allowed to write sqrt([2 4 7]) in o++0. But instead, you can use
[247]sqrt

or shorter also

247 sqgrt

In both cases you get the same result. You can even apply sqrt to any tabment.

Another example is the addition. The + operator is even better known than the root operation. It has
arity 2, which means it requires two input values. The addition is binary. The application of the wrong
number of arguments leads to a syntactical error and a corresponding error message.

3+

as well as

34+

lead to error messages.

In the term

3+4

3 is the first argument and 4 is the second input value. Again, a list or other tabment can be used as
the first argument. The operation and the second argument are then applied to all elements of the
list/table.

137+4

results in

5711

Here and in many other operations the type of the result corresponds to the type of the first input
table. So, the above result is also a list of numbers. Binary operations are always written between the
two input tables in o++0. You can also say that they have to appear after the first input table like the
unary operations. The same applies to ternary operations in o++0. "!" is used as a separator between
the second and third input value.

Hadmersleben subtext 415

for example, has the result:

mersl

The first input value is "Hadmersleben". The second input value (4) specifies the position of the initial
letter of the partial word and the third input value (5) specifies the desired length.

5ifX>316

also requires 3 input values (here: the 5, a truth value, and the 6). If we replace X by 10, the condition
is fulfilled and the improved "if-then-else" operation returns 5. For X=1, however, the value 6 results.

In the following, the input and output data are illustrated once again using typical examples.

(first) input tabment unary operation output tabment

pi sin results in 0.

124

149 sqrt results in 1.2.3.
149 ++: results in 4.66666666666
123456789 '3 results in 123'456'789
First input table | binary operation | second input table output tabment
7 + 8 results in 15
7. + 8 results in 15.
153 + 4 results in 597
153 + 1.2 results in 2.26.24.2
153 + 378 results in 41211
153 + 37 not defined
79 divrest 3 results in 2,13,0
First input ternary second input third input output
tabment operation tabment tabment tabment
"Georg subtext 1 ! 5 results in George
Cantor"
5 if 3=4 (no) ! 6 results in 6
1 2.9 ! 0.5 results in 1.152.25
1 X 2 ! 4 Results for 1212
example in
1. X 2 ! 4 Results for 1.59782294585
example in | 1.86688159101
1.78666803454
1.62531501586

At this point it should be noted that in many cases the result of the previous line counts as the first
input value of an operation:

marks.tab

++:

gives the average of all numbers that occur in the first line marks.tab. marks.tab is the input of ++:
The program

xx.tab

+ 2

adds 2 to each number in table xx.tab. xx.tab is the first input table and 2 is the second. In an
analogous way extracts

names.tab

subtext 314

from each text value (TEXT or WORT or ONR) of names.tab a text of length 4 starting at the third
position. Here the ternary subtext operation has the input tabs names.tab, 3 and 4.

In an assignment or condition several operations can be applied one after the other. If all operations
are unary (one input value), then each corresponding one-line term has the form

tbt op:i: opi; Op1z ... OPi

or more concretely:

1 2 3 sin abs sqrt ++text

If all operations are binary (two input values), the form is

tbt: op, tbt, op,, tbts op,, tbts ... opa tbtha

or more concrete

125

123+4*5 -9

Terms with only ternary operations are certainly rare. Here is just a constructed example:
Magdeburg subtext 2!6 subtext 2!2

results in gd

If brackets are set, they must be calculated first:

abcdefghijk subtext 2!(2+3) resultsin bcdef

abcdefghijk subtext 2!2+3 on the other hand results in bc

(bc + 3equalsbc)

If you are not quite sure, you can put brackets as a precaution.

+3

is not a term, because the operation + has no first input value here. Therefore, an error message
would appear. However, this would not be true if the above code were not on the first line. The
result of the preceding line is then the first input value of + 3 is then the second input value.

In the following, the designations below are used:

num = ZAHL or PZAHL or RATIO or BAR (|) or BARI (stroke list)

nonum = TEXT or WORT or ONR

mixe = nonum and num occur in one column

tbt stands for any tabment type

For the types, we often specify only those that are also changed by the operation.

126

Operation
symbol

Notation:

Input> Result

type

Examples

Meaning

tbt + tbt—>
tbt

113+ 2.1
results in
3.1 3.1 5.1
xy ab + de
results in
xyde abde

addition of numbers or
connecting text

tbt * num->
tbt

235 %2
results in
4 6 10

multiplication

tbt - num->
tbt

3 -2
results in
1

11234 - 345
results in
10889

subtraction

tbt : num>
tbt

3:4
results in
0.75

division

_ -> tbt

Yl:i=xvy z
X? :=1 if
results in
Y ,X? 1

X
y 1
z

Y=y !

place holder

++

tbt ++=> num

2 36 ++
results in
11

sum

k%

tbt **-> num

1 3 5 **
results in
15

product

tbt ---> num

20 5 4 --
results in
11

multiple subtraction

tbt ::=> num

64 2 2 ::
results in
16

multiple division

++:

tbt ++:2>
PZAHL

12 3 2 ++:
results in
2.0

average

++1

tbt ++1->ZAHL

347 9 ++1
results in
4

count

127

Operation Notation: Examples Meaning
symbol Input> Result
type
++text tbt ++text> |[[ab cde fg] ++text connect to text
text results in
abcdefg
++textsep TEXT1 + ab cde fg combine to text with
+textsep ++textsep ";" inclusion of a
"sep"> TEXT [results in separator
"ab;cde;fg"
, tbtl,tbt2> 12,3 pairing
tbt results in (.tab)
ZAHL1,ZAHL
1 3
2
; tbtl;tbt2> 2,3 *2 also a pair formation.
tbt results in but ; separates
4,6 sharper than ,
2;3 *2
results in
2,6
= tbtl,tbt2-> 1=2 equality
BOOL results in
no
<= tbtl <= tbt2>(2 <= 2 less than or equal to
BOOL results in
si
>= tbtl >= tbt2 (2 >= 4 greater than or equal
- BOOL results in to
no
+coll colll +coll {{1 2}} +coll {1} "set-theoretic" union
coll2—> colll |results in
{112}}
-coll colll -coll [2 4 3 2] -coll [2] set difference
coll2-> colll [results in
4 3 2
*coll colll *coll {1 2 3} *coll Cartesian product
coll2-> colll ({4 5}
results in
ZAHL,ZAHL m
1 4
1 5
2 4
2 5
3 4
3 5
:coll colll :coll {1 2 3} :coll [2 3 4] intersection

coll2-> colll

results in

128

Operation Notation: Examples Meaning
symbol Input> Result
type
{2 3}
*1 tbt *1 ZAHL ->|car *1 3 multiply an tabment by
tbt 1 results in an integer to a list
car car car of elements
or
xx.tab *1 3
*mat colll *mat (1,2) *mat [2 3] matrix multiplication
coll2> coll |[results in
8
-1mat coll -1mat—> |<TAB! inverse matrix
coll X1,X2,X3 1
1 0 2
o 2 0
0o 0 8
ITAB>
-1mat
results in
X1, X2, X31
1. -0. -0.25
-0. 0.5 -0.
0. -0. 0.125
& BOOL & BOOL si & no conjunction (logical
-> BOOL results in and)
no
&& tbt &&—> BOOL |si,66,si && for all
results in
si
|1 ZAHL |1 -> 5 |1 transfer numbers into
BAR1 results in tally sheets (for
||| | kindergarten)
numberl .. 1..4 from .. to
num2 -> numl |results in generate numbers with
1234 step 1
numberl ... 0 ... 0.610.2 from ... to ! step
num2 ! num3-> [results in
numl 0. 0.2 0.4 0.6
. X numl ... num2 |1 ..x 6!3 random numbers
! ZAHL -> results in from ..x to ! cnt
numl 532
(for example)
'3 tbt '3-> tbt |1234567890 format in blocks of 3
'3
results in
1'234'567'890
‘4 tbt '4-> tbt |12345.67898 format in blocks of 4

129

Operation Notation: Examples Meaning
symbol Input> Result
type
4
results in
1'2345.6789'8
~ hoch tbt ~» num-> 4 ~ 1/2 to the power of
tbt results in
2.
10 *1 4 ~ (@ ..3)
results in
1 10 100 1000
abs tbt abs—> tbt [-3 7 abs absolute amount
results in (tabh)
37
arctan tbt arctan -> |1 arctan arcus tangent
tbt results in
0.785398163397 (= pi:4)
at GROSS:=NET +% 19 at NET |place a new column to
the right of the
specified column
aus tbtl aus rivers.tabh (new) start of a
aus tbt2 program
> tbt2
comp tbt name-> tbt|<TAB! component
NAME , FIRSTNAME, LOCATION
Mill Paul Halle
TAB>
comp LOCATION
results in
LOCATION
Halle
(see also nth)
cos num cos—> pi cos cosine
PZAHL results in
-1.
cross tbt cross [10 3] *mat (100,20,4) generation of pivot
aggs -> tbt |cross ++ tables
results in (.tab)
ZAHL ,ZAHL ,ZAHL ,SUM? 1
1000 200 40 1240
300 60 12 372
1300 260 52 1612
cut tbt cut ZAHL |123,Today cut elementary values
-> tbt cut 2 to given length

results in (.tab)
WORT1, WORT1
12 To

130

Operation Notation: Examples Meaning
symbol Input> Result
type
3 da
y
det coll det—> <TAB! determinant
coll X1,X2,X3 1
1 0 2
o 2 0o
o 0 8
ITAB>
det
results in
16.
div ZAHL div 11 div 5 integer division
ZAHL-> ZAHL results in
2
divrest ZAHL divrest |11 divrest 5 integer division with
ZAHL-> pair results in remainder
2,1
(not 2.1)
e e e ~ 3 1n Euler's constant
results in
3.
first tbt first -> |1 3;4;7 8 9 from each collection
tbt first resp. elementary
results in (tab) component preserve
ZAHL1,ZAHL,ZAHL1 only the first element
1 4 7
gib tbtl aus students.tab restructuring of a
gib schema gib FAC, (LOC,NAMEm)m tabment, where a dtd,
> tbt2 aggregations, and
atomic schemes are
allowed
giball tbtl giball X | Y 1 extraction of all
giball List of all X and Y corresponding values;
scheme2 subtab segments (any especially useful for
> tbt2 depth); recursive tabments
corresponds to ...//X|Y
of XPath
gibtop tbtl gibtop X1 extraction of the top
gibtop corresponds to: values, only
scheme2 t/X: list of all X-
-> tbt2 subtabments
of t, from the highest
level of t.
if terml if cond |1 if 4=4 ! 2 if with 3 input values
I term2 results in
- tbtl 1

131

Operation
symbol

Notation:
Input> Result

type

Examples

Meaning

1 if 4=3 1 2
results in
2

in

tbtl in tbt2->
BOOL

"1 21" in "1 2"
results in
si

"1 2 3" in
results

no

||1 1 2||

every word of the left
side is word of the
right side

inmath

tbtl inmath
tbt2-> BOOL

[1 3] inmath [1 4 3]
results in

si

2 inmath {6 7 2}
results in

si

mathematical inclusion

keys

tbtl
keys tbt2->
tbtl

Xl:=1 ..40
Y :=X*X
gib X,Y m
keys [7 34]
results in (.tab)
X, ¥Ym
7 49
34 1156

efficient selection in
sets or lists

keyslike

tbtl
keyslike
tbt2-> tbtl

<TAB!

NAME, LOC m
Clara Oehna
Claudia Dallgow
Sophia Dallgow
ITAB>

keyslike ["*ia"]
results

NAME, LOC m
Claudia Dallgow
Sophia Dallgow

efficient selection in
sets or lists with
partial matching

last

tbt last ->
tbt

12 4, 5 last
results in (.tab)
ZAHL1, ZAHL

4 5

from each collection
resp. elementary
component preserve
only the last element

leftat

GR:=NET +% 19 leftat NET

place new column to
the left of the
specified column

like

term like
"term?*"
- BOOL

Hadmersleben like "?
admers*"

results in

si

'?': represents one
letter

similar to

132

Operation
symbol

Notation:
Input> Result

type

Examples

Meaning

'*': represents 0 or

more letters

linreg

tbt linreg—>
num, num

<TAB!
PRICE,SOLD 1
20 0

16

15

16

13

10 1
ITAB>
linreg
results in
19.73214,-0.98214

OO0 b NW

linear regression

lists

tbt lists
ZAHL > tbt 1

Xl:=1 2

lists 2

results in (.tabh)
X11

NN R R
N RN R

generate a list of
lists of specified
length

1n

tbt 1n-> PZAHL

e 1n
results in
1.

natural logarithm

log

tbtl log
tbt2-> PZAHL

100 log 10
results in
2.

general logarithm

lowercase

tbt lowercase
- tbt

asdRRGee34 lowercase

results in
asdrrgee34

turn into lowercase
letters

maxX

tbt max—=> num

12.21,2,Hello
max

results in
12.21

maximum of all numbers

median

tbt median—>
num

1 2 4.9 median
results in
3.0

median

min

tbt min=> num

12.21,2,Hello
min

results in

2

minimum of all numbers

minus

tbt minus ->
tbt

1 -2 4 minus
results in (.tabh)
-12 -4

negate any number

133

Operation
symbol

Notation:
Input> Result

type

Examples

Meaning

natsel

tbt natsel ->
tbt

students.tab,exams.tab
sel NAME=Ernst

natsel

after application of the
condition “exams” also
contains only exams from
Ernst. The input-type
remains unchanged.

natural selection
(regarding common
column names)

next

Xl:=1 2 3
Y:=100. next Y pred

+% 10 at X
results in

, Y1
100.
110.
121.

W N P X

recursive assignment

nextonr

Xm:={1 1.1 1.1.2 2}

Y:=1 nextonr Y pred + 10
at X

results in

, Y m

11
.2 21

next for onr-recursion

no

no—~> BOOL

no or si
results in
si

truth value false
corresponds to the
answer no (Spanish no)

not

BOOL not—>
BOOL

si not
results in
no

negation

nth

tbt nth ZAHL
- tbt'

135 nth 2
results in
3

nth component

nthpred

Name nthpred
ZAHL-> term

Xl:=12314
Y:= X nthpred 2
results in

X,¥? 1

=

hpwnN

1
2

n-th predecessor

nthsucc

tbt nthsucc
ZAHL~> tbt'

X1:=2 47 43 44
sel X nthsucc 2=4
results in (tabh)
4 4 3

n-th successor

134

Operation Notation: Examples Meaning
symbol Input> Result
type
nthzahl tbt nthzahl "2023.03.26" nthzahl 3 nth number in a text
ZAHL-> tbt' results in
26
onr tbt onr-> tbt |1 3 5.2 "4.5.5" onr Conversion to o++o0
results in (.tabh): number
135.24.5.5
onrs tbt onrs name [<TAB! generates o++0 numbers
I element> PART, SUBPARTm m in a table; this is an
tbt' car motor important component of
body BOM explosion.
motor reel
screw
'TAB>
onrs car
results in
PART, (OTTONR, SUBPART m)1
car 1 body
2 motor
2.1 reel
2.2 screw
or BOOL or BOOL |1=1 or 1=2 disjunction (logical
-> BOOL results in or)
si
or2 colll or2 2> |1=2,n0 or2 it exists
BOOL results in
no
permutations|list 249 "permutations” is an
permutations |permutations abbreviation for the
-> listl results in (.tabh) program:
ZAHL1 1 X1l:= 249
249 lists 3
2914 sel Xm= {2 4 9}
429
4 9 2
924
942
pi pi—> PZAHL CIRCULAR_AREA:=R*R*pi circle number
poly num poly 3 poly [1 2 3] polynomial
list> num results in
18
pos Name pos—> sel X pos < 10 position
ZAHL
pos - Name pos--> sel X pos- > 5 position from behind
ZAHL

135

Operation
symbol

Notation:
Input> Result

type

Examples

Meaning

pred

Name pred—->
term

X:=100 next X pred *1.03

predecessor

proj

tbt NAMES ->
tbt

<TABH!

X, Ym m

123

4 5

ITABH>

proj Y

results in (.tabh)
Ym m

5

2 3

omitting columns

proj-

tbt
proj- NAMES
- tbt

<TABH!

X,Ym m

123

4 5

ITABH>

proj- Y

results in (.tab)
Xm

1

4

omitting columns

pzahl

tbt pzahl >
PZAHL

1/5 6 9.7 pzahl
results in (.tabh)
0.2 6. 9.7

conversion to a PZAHL
(float)

pzahllde

tbt pzahllde—>
PZAHL

"Today I get 356,88
euros and not 66.8 .
pzahllde

results in

356.88

first German “Comma
number” of a text

rat

ZAHL rat
ZAHL-> RATIO

<TAB!
X,¥Yl 1
12

3
TAB>
Z:= X rat VY
results in
XY, Zz1) 1
1 2 1/2

3 1/3

conversion of two
integers into one
RATIO number

ratio

num ratio—=>
RATIO

1/5 6 9.7 ratio
results in (.tabh)
1/5 6/1 97/10

conversion to rational
number

rename

tbt

rename X!Y

renaming column names

136

Operation Notation: Examples Meaning
symbol Input> Result
type
rename
Namel !
name2-> tbt'
rest ZAHL rest 13 rest 5 remainder of integer
ZAHL-> ZAHL results in division
3
rnd PZAHL rnd 17.678 3.45 zz 8 rnd 1 round
ZAHL-> PZAHL [results in
17.7 3.5 zz 8
route tbt route—-> <TAB! generate a
tbt X,Y m straightline sequence
00 from point sequence
11
01
ITAB>
route
generates 2 lines from
(0,0) to (1,1) and from
(1,1) to (@,1)
satzl TEXT satzl "It's great. Great. list of sentences
TEXT1 Tomorrow we celebrate.”
satzl
results in (.tabh)
SATZ1
It's great.
Great.
Tomorrow we celebrate.
seg Name seg—> grandson.tabh segment
term sel Oehna in NAME seg
or
X seg ++:
average of all numbers
of the segments,
containing X
sel tbtl rivers.tabh selection
sel cond sel LENGTH >800
- tbt
sel- tbtl sel- LOC=Magdeburg selection
sel- cond sel- Magdeburg
-> tbt sel-: without the
specified struples
sepl constant LUy, |t o1t et lall separators useful

list, useful
for an
additional

(T)Tt HT e

in cut operations

137

Operation Notation: Examples Meaning
symbol Input> Result
type
cut
operations
si si > BOOL si & no truth value true
results in (answer yes (=si))
no
sin PZAHL sin > |3.14159 sin sine function
PZAHL results in
2.65358979335e-06
sqrt num sqrt-> 4 sqrt square root
PZAHL results in
2.
mad tbt mad > [125351] mad scattering
streu PZAHL results in
1.5
subtext text subtext |[aBCdE subtext 2 ! 3 subtext (substring)
ZAHL ! ZAHL-> [results in
TEXT BCd
subtext2 text subtext2 |aBCdEfgh subtext2 "B"!fg |partial text of the
text ! text> |results in CdE first text that lies
TEXT between the other two
given texts.
succ Name succ—> MARK1:= 31 2 1 Successor
term sel MARK >MARK succ
results in
MARK1
32
tag tbt tag NAME! | LOCATION:=Magdeburg enclose data of a
scheme STREET:=Beims schema with a tag
-> tbt' tag ADDRESS!
LOCATION,STREET
results (metadata)
TABMENT ! ADDRESS
ADDRESS !
LOCATION,STREET
LOCATION ! WORT
STREET ! WORT
tago tbt tago 11 13 tagd XX put a tag around the
name—> tbt' results (ment) entire tabment
<XX>
11
13
</XX>
tan num tan-> 3.14 tan tangent function
PZAHL results in

-0.00159265493641

138

Operation Notation: Examples Meaning
symbol Input> Result
type
text mixe text-—> 3.14 ttt 8 transform any
TEXT text elementary type to
results in TEXT.
TEXT1
3.14 ttt 8
textend tbt textend asdfgh text end 4 subtext counted from
ZAHL-> TEXT results fgh back
abcde textend -2
results in
de
textindex text "Today is Tuesday." Position
textindex textindex Tu
text> ZAHL results in
ZAHL
10
time time-> PZAHL [time system time (only the
results in: difference between two
1.557021 such times is
(for example) significant for
efficiency
considerations)
total tbt total facs.tab One or more
aggs -> tbt total ++,++: aggregations at the
results in (.tab) end of each collection
FAC ,DEAN ,BUDGET ,
STUDCAPACITY 1
Art Sitte 2000 600
Infor Reichel 10000 500
Math Dassow 1000 200
Philo Hegel 1000 10
Sport Streich 8000 150
sum sum 22000 1460
avg avg 4400. 292.
trim text trim-> " Hi o++o " trim remove spaces at the
text Results in (ment) back and front
<TABM>Hi o++0</TABM>
tup NAME tup-> grandson.tabh a whole tuple
tupel sel German in NAME tup
untago tbt untage—> [X:=1 remove the outermost
tbt' untago tag
results in
ZAHL
1
uppercase text 1.2,alW uppercase convert to uppercase
uppercase—> results in (.tab)
text PZAHL,WORT
1.2 AW

139

Operation Notation: Examples Meaning
symbol Input> Result
type
variance tbt variance—>|{[1 2 4 6] variance variance
PZAHL results in
4.91666666667
vlists tbt vlists variable-length lists; variable length lists
ZAHL-> tbt 1 [the operation
generates the same as
"lists" except that all
shorter lists also
appear in the result.
wort tbt wort-> "I'm good.So are you." convert to words
wort wort
results in
WORT
I am _good.You_too.
zahl num zahl-> "12" zahl Conversion into
ZAHL results in integers
12
3.14 zahl
results in
3
zahltrip text zahltrip [DAY,MON,YEAR:= the first 3 numbers of
-> Triples of 26.03.1963 zahltrip |a text
nums results in
DAY, MON, YEAR
26 3 1963
zahlratio RATIO 33/7 zahlratio convert to integer
zahlratio -> [results in part and real fraction
ZAHL,RATIO 4 5/7
zahllde text zahllde |["Today I get 66,356 11 extract first integer
- ZAHL euros"” from a German text

zahllde
results in
66

140

Appendix B: List of o++0 color names

"aliceblue",(0.941176470588,0.972549019608,1.);
"antiquewhite",(0.980392156863,0.921568627451,0.843137254902);
"aquamarine",(0.498039215686,1.,0.83137254902);
"azure",(0.941176470588,1.,1.);
"beige",(0.960784313725,0.960784313725,0.862745098039);
"bisque",(1.,0.894117647059,0.76862745098);

"black",(0.,0.,0.);
"blanchedalmond",(1.,0.921568627451,0.803921568627);
"blue",(0.,0.,1.);
"blueviolet",(0.541176470588,0.16862745098,0.886274509804);
"brown",(0.647058823529,0.164705882353,0.164705882353);
"burlywood",(0.870588235294,0.721568627451,0.529411764706);
"cadetblue",(0.372549019608,0.619607843137,0.627450980392);
"chartreuse",(0.498039215686,1.,0.);
"chocolate",(0.823529411765,0.411764705882,0.117647058824);
"coral",(1.,0.498039215686,0.313725490196);
"cornflowerblue",(0.392156862745,0.58431372549,0.929411764706);
"cornsilk",(1.,0.972549019608,0.862745098039);

“cyan”,(0.,1.,1.);
"darkgoldenrod",(0.721568627451,0.525490196078,0.043137254902);
"darkgreen”,(0.,0.392156862745,0.);
"darkkhaki",(0.741176470588,0.717647058824,0.419607843137);
"darkolivegreen",(0.333333333333,0.419607843137,0.18431372549);
"darkorange",(1.,0.549019607843,0.);
"darkorchid",(0.6,0.196078431373,0.8);

"darkred",(0.5450,0.,0.);
"darksalmon",(0.913725490196,0.588235294118,0.478431372549);
"darkseagreen",(0.560784313725,0.737254901961,0.560784313725);
"darkslateblue",(0.282352941176,0.239215686275,0.545098039216);
"darkslategray",(0.18431372549,0.309803921569,0.309803921569);
"darkturquoise",(0.,0.807843137255,0.819607843137);
"darkviole",(0.580392156863,0.,0.827450980392);
"deeppink",(1.,0.078431372549,0.576470588235);
"deepskyblue",(0.,0.749019607843,1.);
"dimgrey",(0.411764705882,0.411764705882,0.411764705882);
"dodgerblue",(0.117647058824,0.564705882353,1.);
"firebrick",(0.698039215686,0.133333333333,0.133333333333);
"floralwhite",(1.,0.980392156863,0.941176470588);
"forestgreen",(0.133333333333,0.545098039216,0.133333333333);
"gainsboro",(0.862745098039,0.862745098039,0.862745098039);
"ghostwhite",(0.972549019608,0.972549019608,1.);
"gold",(1.,0.843137254902,0.);
"goldenrod",(0.854901960784,0.647058823529,0.125490196078);
"green",(0.,1.,0.);

"greenyellow",(0.678431372549,1.,0.18431372549);
"grey",(0.745098039216,0.745098039216,0.745098039216);
"honeydew",(0.941176470588,1.,0.941176470588);

141

"hotpink",(1.,0.411764705882,0.705882352941);
"indianred",(0.803921568627,0.360784313725,0.360784313725);
"ivory",(1.,1.,0.941176470588);
"lavender",(0.901960784314,0.901960784314,0.980392156863);
"lavenderblush",(1.,0.941176470588,0.960784313725);
"lawngreen",(0.486274509804,0.988235294118,0.);
"lemonchiffon",(1.,0.980392156863,0.803921568627);
"lightblue",(0.678431372549,0.847058823529,0.901960784314);
"lightcoral",(0.941176470588,0.501960784314,0.501960784314);
"lightcyan",(0.878431372549,1.,1.);
"lightgoldenrod",(0.933333333333,0.866666666667,0.509803921569);
"lightgray",(0.827450980392,0.827450980392,0.827450980392);
"lightpink",(1.,0.713725490196,0.756862745098);
"lightsalmon",(1.,0.627450980392,0.478431372549);
"lightseagreen",(0.125490196078,0.698039215686,0.666666666667);
"lightskyblue",(0.529411764706,0.807843137255,0.980392156863);
"lightslateblue",(0.517647058824,0.439215686275,1.);
"lightslategray",(0.466666666667,0.533333333333,0.6);
"lightsteelblue",(0.690196078431,0.76862745098,0.870588235294);
"lightyellow",(1.,1.,0.878431372549);
"limegreen",(0.196078431373,0.803921568627,0.196078431373);
"linen",(0.980392156863,0.941176470588,0.901960784314);
"Itgoldenrodyello",(0.980392156863,0.980392156863,0.823529411765);
"magenta",(1.,0.,1.);
"maroon",(0.690196078431,0.188235294118,0.376470588235);
"mediumaquamarine",(0.4,0.803921568627,0.666666666667);
"mediumblue",(0.,0.,0.803921568627);
"mediumorchid",(0.729411764706,0.333333333333,0.827450980392);
"mediumpurple",(0.576470588235,0.439215686275,0.858823529412);
"mediumseagreen",(0.235294117647,0.701960784314,0.443137254902);
"mediumslateblue",(0.482352941176,0.407843137255,0.933333333333);
"mediumturquoise”,(0.282352941176,0.819607843137,0.8);
"mediumvioletred",(0.780392156863,0.0823529411765,0.521568627451);
"medspringgreen”,(0.,0.980392156863,0.603921568627);
"midnightblue",(0.0980392156863,0.0980392156863,0.439215686275);
"mintcream",(0.960784313725,1.,0.980392156863);
"mistyrose",(1.,0.894117647059,0.882352941176);
"moccasin”,(1.,0.894117647059,0.709803921569);
"navajowhite",(1.,0.870588235294,0.678431372549);
"navyblue",(0.,0.,0.501960784314);
"oldlace",(0.992156862745,0.960784313725,0.901960784314);
"olivedrab",(0.419607843137,0.556862745098,0.137254901961);
"orange",(1.,0.647058823529,0.);

"orangered",(1.,0.270588235294,0.);
"orchid",(0.854901960784,0.439215686275,0.839215686275);
"palegoldenrod",(0.933333333333,0.909803921569,0.666666666667);
"palegreen",(0.596078431373,0.98431372549,0.596078431373);
"paleturquoise”,(0.686274509804,0.933333333333,0.933333333333);
"palevioletred",(0.858823529412,0.439215686275,0.576470588235);
"papayawhip",(1.,0.937254901961,0.835294117647);
"peachpuff",(1.,0.854901960784,0.725490196078);
"peru",(0.803921568627,0.521568627451,0.247058823529);
"pink",(1.,0.752941176471,0.796078431373);

142

"plum",(0.866666666667,0.627450980392,0.866666666667);
"powderblue",(0.690196078431,0.878431372549,0.901960784314);
"purple",(0.627450980392,0.125490196078,0.941176470588);
"red",(1.,0.,0.);
"rosybrown",(0.737254901961,0.560784313725,0.560784313725);
"royalblue",(0.254901960784,0.411764705882,0.882352941176);
"saddlebrown",(0.545098039216,0.270588235294,0.0745098039216);
"salmon",(0.980392156863,0.501960784314,0.447058823529);
"sandybrown",(0.956862745098,0.643137254902,0.376470588235);
"seagreen",(0.180392156863,0.545098039216,0.341176470588);
"seashell",(1.,0.960784313725,0.933333333333);
"sienna",(0.627450980392,0.321568627451,0.176470588235);
"silver",(0.898039215686, 0.898039215686, 0.898039215686);
"skyblue",(0.529411764706,0.807843137255,0.921568627451);
"slateblue",(0.41568627451,0.352941176471,0.803921568627);
"slategrey",(0.439215686275,0.501960784314,0.564705882353);
"snow",(1.,0.980392156863,0.980392156863);
"springgreen”,(0.,1.,0.498039215686);
"steelblue",(0.274509803922,0.509803921569,0.705882352941);
"tan",(0.823529411765,0.705882352941,0.549019607843);
"thistle",(0.847058823529,0.749019607843,0.847058823529);
"tomato",(1.,0.388235294118,0.278431372549);
"turquoise",(0.250980392157,0.878431372549,0.81568627451);
"violet",(0.933333333333,0.509803921569,0.933333333333);
"violetred",(0.81568627451,0.125490196078,0.564705882353);
"wheat",(0.960784313725,0.870588235294,0.701960784314);
"white",(1.,1.,1.);
"whitesmoke",(0.960784313725,0.960784313725,0.960784313725);
"yellow",(1.,1.,0.);
"yellowgreen",(0.603921568627,0.803921568627,0.196078431373)

143

	1 Calculations and spreadsheet applications with o++o
	2 A savings bank account
	3 Table Recursion - Exponential Growth
	4 Hello otto - gimmick
	5 o++o for kindergarten?
	5.1 Stroke Lists
	5.2 The conversion operations stroke list to zahl and vice versa
	5.3 The operations + *
	5.4 o++o programs to kindergarten?

	6 o++o in School Lessons
	7 Multiplication, School and Digitization
	7.1 Who can multiply in their head?
	7.2 Who can multiply in writing?
	7.3 Who can program the multiplication?
	7.4 Stroke list multiplication versus decimal multiplication
	7.5 How o++o could enrich the school curriculum?
	7.6 Can the stroke list operation be taught as early as third grade?
	7.7 Does the school calculator from Texas-Instruments calculate wrong?
	7.8 Is EXCEL morally worn out?
	7.9 o++o Proofs
	7.10 An example of deep digitization

	8 Schemes and Structured Tables
	9 Tabment types (TTs) and structured documents
	10 A university database
	10.1 Selection (sel sel-)
	10.2 Calculations (:=)
	10.3 Restructuring (gib)
	10.4 Joining by nested queries
	10.5 A user-friendly “join” (ext ext2)

	11 Special Restructuring Operations
	11.1 The Bill of Material Problem (BOM) (onrs)
	11.2 Transposing Matrices and structured Tables

	12 Some operations for text processing with o++o (+ -+ cut satzl)
	13 Format with o++o ('3 '4 norm3e norm3m mant rnd)
	14 Structured diagrams
	15 Multiple diagrams
	16 Image generation
	Appendix A: List of operations and keywords of o++o
	Appendix B: List of o++o color names

