
o++o
Tabments -

Queries,
Calculations,

Statistics 
and

Visualization

Klaus Benecke
(07.08.2025)

Copyright © 2025 Klaus Benecke. All rights reserved.



Foreword 
What does it mean that o++o (ottoPS) is probably the simplest programming language?

It  does  not  mean  that  o++o  consists  of  very  simple  concepts.  It  does  mean,  however,  that  its 
application is relatively simple. o++o is not simple, but solving problems is easier than with other 
programming languages of equal expressiveness. o++o behaves like a natural language. English or  
German is not easy to learn either. However, natural language can be used - to a certain extent -  
even by children under the age of four. 

We are convinced that the basic idea behind our best operation (stroke list operation) is easier to 
understand than the multiplication algorithm of decimal numbers. In our opinion, the concepts of o+
+o are relatively difficult to formalize, but they can often be described by simple algorithms that 
almost every user (= OttoNormalVerbraucher) can use in the future. 

Is o++o a programming language? 

o++oPS is designed as an end-user language, but not for programming complex database systems or 
compilers. It was developed to support people in solving their mathematical everyday requirements.  
Daily challenges are first of all (ad hoc) queries to tables (databases), documents or collections of 
tables and documents. It also includes financial calculations or in other daily context: determination 
of function values, determination of zeros or extrema of functions and solving a system of equations  
(calculation with matrices). In addition, o++o should be able to generate and manipulate images and 
visualize tables and documents in the form of diagrams. The most important innovative ideas of o++o 
compared to other approaches are connected with repeating groups. This means that a given object 
may contain not only null or one value for an attribute, but also multiple values. For such structures,  
known for more than 50 years in computer science, o++o provides new, powerful and easy to use 
operations. 

This book contains a variety of sample queries to illustrate the basic concepts.

2



Table of content
1 Calculations and spreadsheet applications with o++o.............................................................13

2 A savings bank account...........................................................................................................24

3 Table Recursion - Exponential Growth....................................................................................28

4 Hello otto - gimmick................................................................................................................38

5 o++o for kindergarten?............................................................................................................40

5.1 Stroke Lists............................................................................................................................40

5.2 The conversion operations stroke list to zahl and vice versa................................................41

5.3 The operations + *................................................................................................................41

5.4 o++o programs to kindergarten?..........................................................................................42

6 o++o in School Lessons............................................................................................................45

7 Multiplication, School and Digitization.....................................................................................52

7.1 Who can multiply in their head?...........................................................................................52

7.2 Who can multiply in writing?................................................................................................53

7.3 Who can program the multiplication?...................................................................................53

7.4 Stroke list multiplication versus decimal multiplication.........................................................55

7.5 How o++o could enrich the school curriculum?....................................................................55

7.6 Can the stroke list operation be taught as early as third grade?...........................................57

7.7 Does the school calculator from Texas-Instruments calculate wrong?..................................59

7.8 Is EXCEL morally worn out?...................................................................................................62

7.9 o++o Proofs...........................................................................................................................63

7.10 An example of deep digitization............................................................................................64

8 Schemes and Structured Tables...............................................................................................65

9 Tabment types (TTs) and structured documents......................................................................69

10 A university database...............................................................................................................72

10.1 Selection (sel  sel-)................................................................................................................73

10.2 Calculations (:=)....................................................................................................................78

10.3 Restructuring (gib)................................................................................................................80

10.4 Joining by nested queries......................................................................................................89

10.5 A user-friendly “join” (ext ext2).............................................................................................92

11 Special Restructuring Operations.............................................................................................94

11.1 The Bill of Material Problem (BOM) (onrs)...........................................................................94

11.2 Transposing Matrices and structured Tables........................................................................95

12 Some operations for text processing with o++o (+ -+ cut satzl)..............................................101

13 Format with o++o ('3 '4 norm3e norm3m mant rnd).............................................................103

14 Structured diagrams..............................................................................................................105

3



15 Multiple diagrams..................................................................................................................118

16 Image generation...................................................................................................................121

Appendix A: List of operations and keywords of o++o........................................................................124

Appendix B: List of o++o color names.................................................................................................141

4



List of programs and queries

"Code" a text...............................................101
-+text..........................................................101
A problem with hierarchical paths................68
a simple bill...................................................78
Addition........................................................13
Addition of rational numbers........................13
All names, born in Saxony.............................66
An o++o-program, for which EXCEL needs 

more than 6 worksheets...........................62
apo3 apo4...................................................103
approximate zeros........................................18
Area of circle.................................................45
area under a curve........................................18
area under a non-continuous function.........19
Area without integral calculus......................57
Assignment and gib.......................................79
Assignment with redundancy.......................89
average (weighted).......................................21
Average of several marks..............................14
BMI...............................................................80
Bottle with cork.............................................22
Chart...........................................................107
Chess board problem....................................33
circumference and area of circles.................20
circumference and area of rectangles...........20
circumference of several circles....................20
colors in image............................................122
column chart with signatures.....................105
combine fields who are not on a hierarchical 

path...........................................................88
Comma is an ordinary operation..................14
computations with assignment.....................78
computations without assignment...............78
Compute pi by zeros.....................................45
Concatenate 2 words....................................38
Concatenation of words and text................101
Contrast total revenues and expenditures....24
Count animal species with strokes................57
Count at serveral levels.................................66
Count at several target levels.......................67
Count cars.....................................................43
Count different kinds of animals...................42
Count of binary numbers..............................14
Count struples...............................................65
Counting in structured tables........................58
diagram by click............................................15
diagram with signatures...............................15
Difference or List...........................................13
Distribute 15 apples among 4 children.........43
distribution with cut.....................................88
Division.........................................................13

Division with improved readability...............13
Division with rounding..................................13
Divisions........................................................43
divrest generates a pair of numbers.............15
divrest value table.........................................19
Each of 4 children gets 3 apples....................42
Edge of a cube...............................................14
ext and gib....................................................93
ext, gib and sel..............................................92
ext, sel and gib..............................................93
ext2...............................................................92
ext2 sel and gib.............................................93
Fibonacci-numbers........................................46
first and last transaction...............................24
four plus four................................................41
four times 3...................................................50
Functions by column charts........................112
functions with image..................................122
GDP 1988 to 2014.........................................35
GDP 1992 to 2014.........................................34
Generate 2 times 10 points.........................121
Generate a bikini.........................................123
Generate the German flag..........................122
grouping with aggregation............................87
how many turnovers?...................................24
how much got Ms. Heyer per year and month?

..................................................................25
how much money was transferred from the 

account?...................................................24
how much money was transferred to the 

account?...................................................24
How much Ms. Heyer got.............................24
How old is Claudia?.......................................44
if 79
Illustration of collection symbols..................80
image..........................................................121
Income and expenses...................................25
Income and expenses monthwise.................26
in-relation.....................................................66
Interests of 1 % and 9 %................................29
Interests of 1 % und 9 % within 200 years....31
Interger zeros of a polynomial......................45
Intersection by gib........................................86
Introduction of two column names..............14
last................................................................77
line chart.................................................26, 28
List of 2 words...............................................38
List of stroke lists..........................................41
list times number..........................................54
Local maximum.............................................47
Local minimum of a polynomial....................57

5



mant............................................................104
Matrix multiplication in o++o........................54
Matrix-multiplication with o++o function.....55
Maximum of numbers..................................14
minimum (local)............................................18
multiple charts............................................118
multiplying a table with a number................20
nested join with depth three........................91
non-hierarchical path with gib......................88
norm3m norm3e.........................................103
number to stroke list.....................................41
o++o program on the blackboard.................56
o++o proof (preparation)..............................63
o++o proof for mad.......................................64
Omit rows and columns................................88
Output two words.........................................38
pack data......................................................82
Pair of 2 independent terms.........................14
Pair of words.................................................38
Pascal triangle...............................................47
plus percent..................................................78
prime numbers up to 70...............................19
Product of 5 numbers...................................56
Product of nubers from 1 to 100...................14
restructuring with aggregation.....................87
reverse a hierarchy.......................................83
sel after gib...................................................71
sel twice........................................................73
sel two times.................................................74
sel-and sel.....................................................77
select and sort...............................................67
selection and assignment..............................79
selection assignment and gib........................79
selection by ?................................................83
selection by content and position.................76
selection by position.....................................71
Selection by position.....................................49
selection by word in 2 files............................76
selection by words........................................76
selection in numbers...................................102
selection in top level.....................................75
selection with aggregation............................77
selection with gib..........................................82
selection with set..........................................74
selection with two gib clauses......................82
selections by content....................................74
selections on top level..................................75
selections on two levels................................76
Set difference................................................51
set difference by selection............................87
set difference with nested query..................87
Set of two words...........................................39

Sine function and its derivation....................47
Sine of 30 degrees.........................................13
Sine of pi : 2..................................................13
Six years old children wanted.......................44
Sort a chart.................................................106
Sort by 2 fields in one level...........................81
Sort downwards............................................81
Sort faculties by Budget and additionally by 

studcapacity..............................................81
Sort two levels..............................................81
Stroke list multiplication in o++o..................53
Stroke list multiplication shorter...................53
Stroke list to number....................................41
Structured bar chart....................................108
structured chart..........................................111
Structured chart for elections.....................114
Structured chart of BMI..............................110
structured diagram.......................................16
Structured diagram with user defined colors

........................................................115, 116
Structured join with nested query................90
structured left outer join...............................90
Subtraction...................................................41
Sum of 4 numbers.........................................14
Sum of first 100 numbers..............................56
Sum of numbers of 1 to 100..........................14
table for function graph................................18
table of values...............................................17
Table plus percent number...........................78
tag with gib...................................................84
ten times ten.................................................41
Text...............................................................38
three plus four..............................................50
to the power of.............................................13
total price of a bill.........................................21
total price of a simple bill..............................20
transpose, meta1..........................................99
transpose, metaprim....................................99
two nested joins............................................91
two selections at top level............................75
Two words one column.................................38
Two words to meta and primary data...........39
two words two columns................................38
Type of the more general or first input value is 

maintaind..................................................13
Type of the more general or first input value 

remains.....................................................13
union by gib..................................................85
Weighted averages.......................................49
woman weighs 40 kg plus half her weight....22
Young children wanted.................................44
Zero of sine function.....................................45

6



7



Introduction
We summarize the main design principles and requirements for an end-user computer language or  
data model with corresponding operations:

1. It should be based on easily applicable concepts with a simple syntax. 
2. It should be expressive and powerful. 
3. It should be expandable with new operations. 
4. It should have precise semantics based on algorithms. 
5. It should allow queries on tables (databases) and documents. 
6. It should allow queries over document collections (IR systems) and entire databases. 
7. It should allow at user level computations by naive (brute force) algorithms. 
8. It should also be usable for people with little interest in mathematics and computer science 

(programming by gut feeling). 
9. It is intended to provide simple as well as more sophisticated concepts for broad classes of  

applications,  suitable  even  for  users  with  a  keen  interest  in  mathematics  and  computer 
science. 

10. It should solidly integrate single data and mass data operations. 
11. The result of a mass data operation should be as small as possible. 
12. It would be nice if it could use graphical features based on structured tables. 
13. It should be efficiently implementable. 
14. At least parts of the language should be able to be optimized.

o++o was designed and developed with these principles in mind. It started as a database language for 
tables with repeating groups. A record with repeating groups may contain not only one value at each 
position, but also several (sub tuples of) values. For example, a student record may contain a name 
and  a  scholarship,  but  it  may  also  contain  multiple  hobbies  or  multiple  (SUBJECT,MARK)  pairs.  
Similarly, a machine part may contain a number and a color, and to that several subparts or several 
layers or edges. Such sub-tuples may have sub-tuples again. These repeating groups have existed in 
computer science for more than 60 years. They are typical for hierarchical systems (IMS, ...), but  
were later discredited by emerging relational systems. Even today they are widely used in XML, JSON 
and  NoSQL  systems.  However,  in  our  opinion,  there  is  no  widely  accepted  computer  language  
capable of adequately handling these richer structures. With the advent of XML, we have been able 
to generalize our operations to the new capabilities of arbitrary tagging and the alternate operator 
(|). Therefore, we are able to manipulate not only tables, but also documents. We have introduced 
the name tabment. A tabment can be understood as an abstract (syntax-independent) specification 
of an XML document. Step by step we improved our language o++o. We introduced binary search  
trees in tabments. Thus, we have achieved great efficiency gains for several operations.

 Some indices can also be considered as tabments.

Our language o++o has been implemented in OCaml. Some basic keywords of o++o are German or 
Spanish  ('gib'  instead  of  SELECT,  ‘si’  instead  of  true,  ...)  because  they  are  shorter  than  the 
corresponding English words, but most keywords are English. This seems to be important because 
smartphones have only a small screen.

Today, many people also believe that no one would buy a computer program that might take a few 
hours or days to learn.

We put forward the following arguments against it:

0. Almost all people in the world had to learn for several years to understand the single data  
operations addition, multiplication, division and difference for each number range in school.  

8



Are mass data operations like selections, calculations, restructuring, sorting tables, ... not just 
as important?

1. A good programming language allows many problems to be formulated more briefly and 
precisely with fewer misunderstandings than any natural language.

2. There is no need to explain the advantages of someone who has a driver's license or even a  
car. If he can even program solutions to problems with the computer himself, this increases  
the quality of computer use, because he can also interpret the results better. He does not  
need a computer scientist (chauffeur). Thus, there are fewer communication problems and 
he saves the cost of the computer scientist and the time for communication.

3. If the individual can make precise queries, he has much more compact query results and 
saves a lot of manual search effort. This also reduces the workload and improves quality.

What are the more specific design principles of o++o?

1. important things first

1.1 Sorting by the first attributes of a collection
gib DEPARTMENT,CHIEF,(NAME,LOCATION m) m

Here is  described a  structured table,  which  contains  for  each department  also  a  
corresponding group of employees. Sets (m) (and multi sets) are always sorted by the 
first column names. I.e. the outer set is sorted by DEPARTMENT and the inner set by 
NAME  and  then  by  LOCATION,  because  the  NAME  is  not  always  a  key  in  a 
department. 

1.2 First written - first calculated:

2+3*4 gives 20

Here, a rectangle has one longer side, which consists of two sections 2 and 3 meters 
long. The other side is 4 meters long. The area gives 20.

3*4+2 gives 14

If I have two rectangles, one with side lengths 3 and 4 and one with area 2, I can first 
calculate 3*4 and then add 2 to get the area. 

Please, do not overestimate these two examples. This is not new, because you get 
the same results with the most pocket calculators and the calculator of WINDOWS in 
normal mode. Also, the computer language SMALLTALK computes from left to right. 
Further,  the old Greek scientists  and each child  in  the first  and second grade ,… 
compute in this way. Additionally, very few people know all priority rules. 

1.3 TT-Invariance (TT=TabmentType)

For many operations such as addition or multiplication, the type of the result is the 
same as the type of the first input value.

<TABH!
SUBJECT, MARKl m
Math     1 2 4 1
Phy      2 3 5 2 4
!TABH>
*15/6

Here a whole table in horizontal tab format is multiplied by a number. That is, each 
number of the table is multiplied by 15/6 and the words remain unchanged. This 
results again is a table of the type SUBJECT,MARKl m. We see again, the first input 
value is more important than the second.

1.4 Exponent representation of numbers

9



o++o additionally,  a  representation allows,  where  the  more important  part  -  the 
exponent - precedes the mantissa of a number. The exponent says more about the 
size of the number than the mantissa:
6m12.345'678 (12 million 345 thousand ...)
9m123.456 (123 billion 456 million ...)

2. pragmatics and methodology first
We can also allow multi-line semantics for a single term. Then we could replace

(23+45+67) * (1111+2222+3333+4444)
through

23+45+67
*
1111+2222+3333+4444

This can be typed faster and is also clearer by dedicating a line to each pair of parentheses. In 
o++o this notation is further shortened to

23+45+67
* 1111+2222+3333+4444

This is not only done for methodological reasons (better readability), but for pragmatism. 
This notation does not waste the additional middle line. Compared to the first notation, you 
have to use a (larger) return key only once instead of 4 brackets. Further, each line gives a 
result. 

3. short catchy keywords
Short programs require short keywords and short operation symbols or names. However, if 
the  number  of  these  symbols  becomes  too  large,  one  must  also  allow  full  names  for 
designations so that the user can remember them. For o++o holds, the more important a 
symbol  is,  i.e.  the  more  frequently  it  is  used,  the  shorter  it  is.  This  rule  can  be  better 
implemented by allowing non-English keys as well.
Very short are + , * ,... l (list), m ... . This is certainly all right. We have also replaced many 
English terms by more memorable and shorter symbols:
sum: ++
product: **
average: ++:
count: ++1
...

Where we have found very short memorable known words in a language other than English,  
we  substitute  English  terms  with  shorter  ones  from other  languages  if  those  words  are 
known to many people:
true: si (Spanish Italian)
false: no
From the translation of SELECT-FROM-WHERE (gib-aus-mit) are the German words:
gib (select) for "give me"
and
aus (from)

4. programs are processed from top to bottom and from left to right.
Programs with loops or general recursion are expressive and powerful, but often difficult to 
read and understand. Sequential programs are expected to be not so expressive. o++o has 
been  developed  to  prove  the  opposite,  too.  This  requires  powerful  and  expressive 
operations.

Readability of programs and tabments is an important problem.
o++o has been taken this into account as follows:

1. Programs can often be written short.

10



2. Numbers can also be displayed in Swiss style (e.g.: 12'345'678)
3. Lines indented by more than 4 spaces logically belong to the previous line. E.G.:

my_marks.tab
gib AVG,(SUBJECT,AVG m)
    AVG:=MARK! ++:   # this line belongs from the logical  
               # point of view still to the previous line
rnd 1

4. A structured table with the scheme
DEPARTMENT,CHIEF,(NAME,SALARY m) m
contains each department and boss only once. This not only reduces redundancy, but also 
improves readability compared to flat tables of this type.

In the chapters it is shown, how general and simple the query possibilities of o++o are. Chapter 1 
introduces some basic functions of our "pocket calculator". All examples there do not require any 
stored tables or documents. This does not mean that our o++o programs cannot work with files. 
Tables and documents can also be stored.

First of all, the user must understand what a schema is and what are the tables or documents that  
belong to this schema. Then it will not be too difficult to grasp the query examples for selection, 
calculation and restructuring  of  the  first  chapters.  All  operations  allow a  compact  and readable 
formulation  of  (complex)  queries.  They  apply  to  nested  lists  or  sets,  and  they  are  new  to  the  
database  world.  Calculations  can  often  be  understood  as  hierarchical  "map"  functions,  because 
operations are often applied to each of the input values. Restructuring with the gib clause is very  
expressive, as it is combined with sort (m, b), duplicate elimination (m), aggregation (++, min, max, +
+1, ++:, or2, &&, **, variance).

We know of no other restructuring operation in a commercial product that allows to transform a 
given hierarchy only by specifying a schema or TT (Tabment Type) of the desired structure. Although  
the operations in the examples are only applied sequentially, they cover a wide range of applications.

Section 10.4 introduces a "natural" join called  ext operation and its un-nested and nested uses. It 
becomes clear that we do not need the Cartesian product and even the ordinary flat relational join. A  
simplified notion of recursion is introduced in Chapter 3. With this end-user recursion, appropriate  
queries can be realized with minimal learning effort. After showing in Chapter 4 that printing two 
words is not just a syntactic issue, Chapter 6 tries to make clear that o++o is useful for all subjects in 
school, but especially for mathematics and computer science. It will be made clear that even 9th or 
10th grade students can solve problems that are applications of differential and integral calculus. In 
addition, it is argued that the ordinary division algorithm could be eliminated from the mathematics  
curriculum. It requires neither Cartesian product nor (hidden) join conditions. 

Chapter  17  contains  some  queries  where  the  result  can  be  interpreted  as  an  image.  Roughly 
speaking, each result table contains the coordinates of points possibly combined with a color value. It  
is also shown that it is easier to create structured diagrams based on structured tables.

The most important operations of the data model are described in more detail in chapter 10. Section 
10.3 contains the description of the restructuring operation, 10.2 the assignment operation and 10.1  
the selection.

Acknowledgements:
I would like to thank the following computer scientists for their valuable contributions to our system  
o++o and previous systems:
Wolfgang Reichstein for the first one-step implementation of the restructuring operation in C for  
HSQ files,

11



Dmitri Shamshurko for the first implementation of the first core of the "gib-aus-mit" construct in a  
functional style (Caml Light),
Martin Schnabel for the conception and implementation of subroutines and other features,
Andreas  Hauptmann for  improving  many  concepts  in  design  and  efficiency,  especially  for  query 
optimization concepts.
Further thanks go to Stephan Schenkl and Mirko Otto for supporting the o++o project.

12



1 Calculations and spreadsheet applications with o++o
We first present some numerical calculations.

Program 1.1: Addition; Result (type: the more general type of both)
1 + 4.56 5.56

Program 1.2: Division Result
1:7 0.142857142857

Program 1.3: Division with improved readability Result
1:7 '3 0.142'857'142'857

Program 1.4: Division with rounding Result
1:7 rnd 3 0.143

Program 1.5: Exponentiation Result
3^20 '3  # '3 is an idea from Swiss 3'486'784'401

# is the comment character. Comments can be used to explain programs.

Program 1.6: Addition of rational numbers Result
3/4 + 1/3 13/12

Program 1.7: Type of the first input value is 
maintained, if the types do not generalize each 
other

Result

3/4 + 0.3 21/20

Program 1.8: Type of the first input value is 
maintained, if the types do not generalize each 
other

Result

0.3+3/4 1.05

Program 1.9: Difference or list Result
3 - 2 # Note that "3 -2" is a 
      # List of two numbers 

1

Program 1.10: Sine of pi : 2 Result
pi : 2 sin 1.

Program 1.11: Sine of 30 degrees Result
30:180*pi sin 0.5

Program 1.12: How many 10-digit binary Result

13



numbers are there?
2 ^ 10     # base:2   exponent: 10 1024

Program 1.13: Calculate the edge length of a 
cube with volume 2

Result

2 ^ 1/3 1.25992104989
or

Program 1.14: Calculate the edge length of a 
cube with volume 2 using ordinary division 
operation

Result

2 ^ (1:3) 1.25992104989

Program 1.15: Sum of 4 numbers Result
3.21 4.56 6.88 9.32 ++ 23.97

Program 1.16: Sum of numbers from 1 to 100 Result
1 .. 100 ++ 5050

Program 1.17: Product of the 
numbers from 10 to 40 

Result

10 .. 40 ** 2248443792019118536005322061276774400000000
You can see from the result that you can process arbitrarily large integers with o++o. 

Program 1.18: Maximum of numbers Result
1/3 2/7 max 1/3

Program 1.19: Average of several marks Result
1 3 2 1 3 4 ++: 2.33333333333

Program 1.20: Introduction of two column names 
(Output values of two terms simultaneously)

Result

X:=2 ^ 10   # := : assignment
Y:=X : 10  

X,   Y
1024 102.4

Program 1.21: a pair of two independent terms Result      
2 sqrt; 3 sqrt # ; separates 
               # stronger than ,

PZAHL,        PZAHL    
1.41421356237 1.73205080757

There are few commas in primary data of tables. This would destroy the readability. Therefore, we 
do not find commas in .tab files, for example, even if  pairs or tuples are represented. However, 
pairing is represented in the metadata (table headers) of the tables to prevent misunderstandings. 
PZAHL is a number with a point.

Program 1.22: Comma is an ordinary operation: 
Calculation from left to right

Result

2 sqrt,3 sqrt  # the last sqrt
               # acts both via
               # "2 sqrt" as well 

PZAHL,      PZAHL   
1.189207115 1.73205080757

14



               # as over 3

Program 1.23: divrest generates a pair of 
numbers

Result

DIV,REST:=13 divrest 5 DIV, REST
2    3

Program 1.24: create a simple diagram with one click
1 3 2 5 1 # List of numbers
Result: Diagram (columns)

SUBJECT,    MARK l
Mathematics 1
Physics     2
English     1
German      2

        marks1.tab

The above table represents a list of (SUBJECT,MARK) pairs. It can be created with any text editor or 
typed into the output field of the o++o interface. l stands for list. 

Program 1.25: a simple bar chart with signatures
marks1.tab
Result (struc.diagram - bar)

15



It is also possible to enter the following line into the program field of the Otto interface.

SUBJECT,MARK l:=Mathematics Physics English German posjoin 1 2 1 2

By the operation ,,  the both given lists are elementwise connected by comma. The resulting list 
consists of 4 (WORT,ZAHL) pairs, where the first column is renamed to SUBJECT and the second to 
MARK.

The basic data of the following query can be generated by the following small structured table. Here  
l stands for list. It needs the ending “.tabh”, because the marks are arranged horizontally. Lists were  
invented in Venice (Lista). The single entries (=elements = rows) of the list were arranged one below  
the  other.  The  subjects  are  also  arranged  vertically  in  noten2.tabh.  Simple  lists  were  already 
arranged horizontally thousands of years ago. A sentence is a list of words, which were essentially  
arranged horizontally. Since this saves a lot of screen space and paper, simple (single-column) lists in  
o++o can also be arranged horizontally. This is possible because the list is understood abstractly. This  
allows o++o to understand JSON lists, for example, even though the list elements are not simply 
separated by spaces. In questions of the representation of the elements, sets and multisets are equal 
to lists. However, different parentheses are used. 

SUBJECT,     MARKl m
Mathematics  2 1 3
Physics      2 2 3
English      1 4

        marks2.tabh

This table can also be generated by the following program line with set brackets { }:

SUBJECT,MARKl m:={Mathematics,[2 1 3] Physics,[2 2 3] English,[1 4]}

16



Program 1.26: a structured diagram
marks2.tabh
gib AVG,(SUBJECT,AVG,MARKl m)
    AVG:=MARK! ++:

Result (diagram columns)

Result (tabh output)

AVG, (SUBJECT,    AVG,        MARKl m)
2.25  English     2.5         1 4
      Mathematics 2.          2 1 3
      Physics     2.333333333 2 2 3

The following are examples of a curve discussion using a parabola as an example.

Program 1.27: Calculation of a small table of 
values of the quadratic function with 
coefficients 1 -8 13 (x2  - 8 x +13)

Result (tab)

Xl:= -2 .. 10
Y := X poly [1 -8 13]

X, Y l

-2 33
-1 22
 0 13
 1 6
 2 1
 3 -2
 4 -3
 5 -2
 6 1
 7 6
 8 13
 9 22
10 33

17



Program 1.28: Expanding the value table so that 
a function graph can be seen. 
Draw the graph of the parabola
(quadratic function) with the x-axis and the 
function y=x in the interval [-2 10].

Result (image)

Xl:= -2 .. 10! 0.01
Y := X poly 1 -8 13
LINE:= X
Y0:= 0*X

Program 1.29: Approximate determination of the 
(local) minimum of the parabola

Result

-2 ... 10!0.0001 poly [1 -8 13] min -3

Program 1.30: Approximate determination of the 
two zeros

Result (tab)

Xl:= -2 ... 10!0.0001
Y := X poly [1 -8 13]
sel  Y succ * Y <= 0 # succ: successor
rnd 7

X,        Y l

2.2679000  0.0001704
5.7320000 -0.0001760

Program 1.31: Determining the 
area under a (composite) function

Result (image) (without 2 last program lines)

Xl:= -2 ... 10! 0.0001
Y := (X poly [1 -8 13],0) min
RECTANGLE:= Y*0.0001
++ RECTANGLE

Result (tab)
-6.92820323316

18



If we omit the last two program lines in the following program, the function can be visualized by 
clicking on image:

Program 1.32: Determination of the area under a 
non-continuous function

Result (image)

Xl:= -2 ... 10! 0.0001
Y := X poly (1 -8 13),(X rnd 0) min
RECTANGLE:=Y*0.0001
++ RECTANGLE

Result (tab)
21.970089131

Program 1.33: Using the divrest function to output 
number pairs

Result (tab)

Xl:=1 ..10
DIV,REST:=X divrest 3

X, DIV,REST l

 1 0   1
 2 0   2
 3 1   0
 4 1   1
 5 1   2
 6 2   0
 7 2   1
 8 2   2
 9 3   0
10 3   1

Program 1.34: Determination of all prime numbers up to 70
Xl:= 2 .. 35
Yl:= 2 .. 9 at X
PRODUCT:= X*Y
sel  PRODUCT <= 70 # sel : with
gib PRODUCTm
PRIMl:= 2 ..70
sel- PRIM in PRODUCTm   # sel-: without
gib PRIMl

Result (tabh output):
2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67

Program 1.35: Calculate the circumference of several circles, whose radii are given. The results are 

19



to be rounded to 2 digits after the point.
4 5 6 2 3.7 9.77 *pi*2 rnd 2

Result (tabh)
25.13 31.42 37.7 12.57 23.25 61.39

You can see that this program can be written in one line.

Program 1.36: Calculating circumference and area 
of several circles, whose radii are given

Result (tab)

Rl:= 4 5 6 2 3.7 9.77
CIRCUM :=R*pi*2
AREA:=R*R*pi
rnd 1

R,  CIRCUM, AREA l

4.  25.1    50.3
5.  31.4    78.5
6.  37.7   113.1
2.  12.6    12.6
3.7 23.2    43.0
9.8 61.4   299.9

By Rl:= the name R ( called "tag") is assigned to each element of the given list.

An assignment (":=") adds a new column to the specified table. In the above program, the columns 
CIRCUM and AREA are added one after the other, resulting in a table of type R,CIRCUM,AREA l. l 
stands for list. Unfortunately, this can easily be confused with the one.

Program 1.37: Calculating perimeter and area of 
multiple rectangles

Result (tab)

<TAB!
A,   B l
1.23 5.67
7.65 4.32
9.87 6.54
!TAB>
CIRCUM:=A+B*2
AREA:=A*B

A,   B,   CIRCUM, AREA l

1.23 5.67 13.8     6.9741
7.65 4.32 23.94   33.048
9.87 6.54 32.82   64.5498

The TAB brackets ("<TAB!", "!TAB>") are needed only in the program part of the system. In a file the 
system recognizes the type by the ending ".tab".  In  the TAB representation the values must  be 
aligned to the left side of the associated column names.

Program 1.38: Total price of a simple invoice Result
<TAB!
ARTICLE, PRICE l
Beer     0.61
Lemonade 0.23
Steak    2.40
!TAB>
++

3.24

Here we simply sum over the numbers in the given table (a list of pairs). The ARTICLE values are 
words and therefore have no effect on the result. Now we replace ++ with +% 10. This creates a table  
with 2 columns and three rows (records, tuples). Each number now still contains 10% tip:

Program 1.39: Multiplying a table by a number Result
<TAB!
ARTICLE, PRICE l
Beer     0.61
Lemonade 0.23

ARTICLE, PRICE l
Beer     0.671
Lemonade 0.253
Steak    2.64

20



Steak    2.40
!TAB>
+% 10

Then you can add again with ++ to get the total (3.564).

Program 1.40: Find the total price of a more 
complicated calculation using a simple table

Result

<TAB!
ARTICLE, PRICE, CNT l
Beer     0.61   7
Lemonade 0.23   3
Steak    2.40   4
!TAB>
POSPRICE:= PRICE*CNT
gib POSPRICEl
++

14.56

As a result of the assignment, the specified table is extended by a new column with the column name 
POSPRICE,  where  each  of  the  three  PRICE  values  is  multiplied  by  the  associated  CNT value.  To 
determine the total price the ++ operation has to be applied only to the POSPRICE-values. Otherwise,  
the sum of all nine numbers in the table above would be formed. 

The first input value of an operation, which is at the beginning of a program line, is always the result  
of the previous program line.

The ":=" sign of the assignment is to be distinguished from the equal sign =. For the formulation of  
conditions the equal sign, as well as <, >, <=, "in" etc. is needed. Conditions are used for selection  
(filtering of (complex) rows of structured tables).

For example, add a condition
sel  ARTICLE = beer
or only
sel  beer
then the final result is the total price for the seven beers. If you want to calculate only the price for  
the other items instead, use
sel- ARTICLE = beer 
or simply
sel- beer.

Column names (metadata) must always be written in upper case. The keywords (gib, sel-, sel , ...) 
must always be written in lower case. If you write a word of the primary data always with upper and  
lower case letters, the program becomes easier to read.
The reference to the aggregation (here ++) results from the header line of the desired table. TOTAL is 
an aggregation per NAME. Sets (m, m-) are always sorted by the column names specified first.

Program 1.41: Find a weighted average for 3 
students and the overall average

Result (tabh)

<TABH!
NAME,  EXAMl,MARKl l
Ernst  1 2   1 2 3 1 3 1 1
Clara  1 1   3
Sophia 1 3   1
!TABH>
TOT:=EXAMl ++: *0.6 +(MARKl ++: *0.4)

TOTAL,(NAME,  TOT, EXAMl,MARKl l)
1.66   Ernst  1.59 1 2   1 2 3 1 3 1 1
       Clara  1.80 1 1   3
       Sophia 1.60 1 3   1

21



TOTAL:=TOTl ++:
rnd 2

Program 1.42: A woman weighs 40 kg plus half her 
weight. How much does she weigh?

Result

WEIGHTl:= 40 .. 100
sel  WEIGHT:2+40=WEIGHT

80

Program 1.43: A bottle with a cork costs one euro and ten 
cents. The bottle is one euro more expensive than the cork. 
How much does the bottle cost?

Result 

BOTTLEl := 0 .. 110
sel  110-BOTTLE=BOTTLE- 100 # = CORK

BOTTLE
105

Program 1.44: A bottle with a cork costs one euro and ten 
cents. The bottle is one euro more expensive than the cork. 
How much does the cork cost?

Result 

BOTTLEl:= 0 .. 110
CORK:= BOTTLE - 100
sel  CORK+BOTTLE = 110

BOTTLE, CORK l
105     5

The first assignment gives each of the numbers 
from 0 to 110 the tag BOTTLE. This is best seen by 
looking at the ment representation:

If we had written the assignment 
BOTTLE:= 0 ..110, the BOTTLE tag would appear 
only once:

<TABM>
  <BOTTLE>0</BOTTLE>
  <BOTTLE>1</BOTTLE>
  <BOTTLE>2</BOTTLE>
  <BOTTLE>3</BOTTLE>
  ...
  <BOTTLE>108</BOTTLE>
  <BOTTLE>109</BOTTLE>
  <BOTTLE>110</BOTTLE>
</TABM>

<BOTTLE>
0
1
2
3
...
108
109
110
</BO TTLE>

Program 1.45: A bottle with a cork costs one euro 
and ten cents. The bottle is one euro more 
expensive than the cork. How much does the 
bottle cost?

Result 

BOTTLEl:= 0 ..110
CORK1  := BOTTLE - 100
CORK2  := 110 - BOTTLE
sel  CORK1=CORK2

BOTTLE, CORK1, CORK2 l
105     5      5

This solution is advantageous from a methodical point of view, because the first 3 program lines can  
be displayed by clicking on the image button. You can see that there are 2 straight lines whose 
intersection is determined by the conditions. You can also click diagram/Balken to get the following 
result, where it is visible that both bars are equal at 105. Here we had to add the program line:  
BOTTLE::=BOTTLE wort

22



23



2 A savings bank account
The following requests refer to data records of the savings bank. Here the customer can download 
his data as a csv file. csv files have a very simple structure. Since they contain a lot of quotation  
marks, they are relatively difficult to read. The otto user does not need to familiarize himself with this 
syntax. He can view them or parts of the file in the usual way as tab, hsq, ment, web or json files. We 
consider a file turnover.csv, which contains transactions from 3 years. 

Program 2.1: How many turnovers are there? Result 
turnover.csv 
++1

162

Program 2.2: Give the first columns of the first and last transaction!
turnover.csv 
sel  AMOUNT pos=1 or AMOUNT pos- =1

Result (tab output):
ORDERACCOUNT,     POSTINGDATE,VALUEDATE,POSTINGTEXT,    USAGE....       
DE598105327206411 20.07.22    20.07.22  ONLINE REFERRAL ReNr2 
DE598105327206411 13.05.20    13.05.20  ONLINE REFERRAL Wage 

pos determines the position of a tuple. pos starts counting from the beginning with 1 and pos- from 
the end. "or" is the logical or sign. 

Program 2.3: How much money was transferred to 
the account?

Result 

turnover.csv 
sel AMOUNT > 0 
gib AMOUNTl
++
'3

110'729.17

Program 2.4: How much money was transferred 
from the account?

Result 

turnover.csv 
sel AMOUNT < 0 
gib AMOUNTl
'3

-94'713.65

Program 2.5: Contrast total revenues and expenditures Result (tab)
turnover.csv
gib INCOME,EXPENSES
    INCOME  := AMOUNT if AMOUNT > 0!0!++
    EXPENSES:= AMOUNT if AMOUNT < 0!0!++
'3

INCOME ,    EXPENSES 

110'729.17  -94'713.65

Program 2.6: How much was transferred 
to Ms. Heyer in total?

Result 

turnover.csv 
sel Heyer -54'538.28

24



gib AMOUNTl
++ 
'3

Here the user must know his data. If there are two Heyer's, the above result is certainly not the  
desired one. One could then add the first name:

sel  Heyer Erika  

or

sel  Heyer & Erika

You can also use the account number, but then the program is not so well readable, because most  
people cannot remember an account number or IBAN. 

Program 2.7: How much was transferred to 
Ms. Heyer in each year and month?

Result (tab)

turnover.csv 
sel Heyer
D,MONTH,YEAR:=VALUTADATUM zahltrip 
gib YEAR,SUM,(MONTH,SUM m) m
    SUM:=AMOUNT ! ++
'3

rnd 2

YEAR, SUM ,     (MONTH, SUM2 m)m 
20    -16'807.22  5     -1'967.66
                  6     -1'777.31
                  7     -1'943.89
                  8     -2'110.27
                  9     -1'833.69
                 10     -3'189.39
                 11     -1'973.48
                 12     -2'011.53
21    -20'727.13  1     -2'011.53
                  2     -1'911.90
                  3     -2'006.17
                  4     -2'443.65
                  5     -2'438.02
                  6       -583.32
                  8       -812.47
                  9     -2'636.73
                 10       -993.13
                 11     -2'635.68
                 12     -2'254.53
22    -17'003.93  1     -1'630.30
                  2     -2'202.03
                  3     -1'324.38
                  4     -1'438.72
                  5     -4'460.36
                  6     -2'999.59
                  7     -2'948.55

Program 2.8: Give a comparison of the income and expenses for each year!
turnover.csv
YEAR:=20 wort + (VALUTADATUM subtext 7!2)
gib YEAR,PLUS,MINU,SUM m
    PLUS:=AMOUNT if AMOUNT>0!0!++
    MINU:=AMOUNT if AMOUNT<0!0!++
    SUM:=AMOUNT!++
'3

25



Result (tab output):
YEAR, PLUS ,    MINU ,     SUM m
2020  24'921.   -23'257.11  1'663.89
2021  50'468.04 -34'274.22 16'193.82
2022  35'340.13 -37'182.32 -1'842.19

subtext needs 3 input values. Here VALUTADATUM is the first, the initial character number 7 the  
second and the length of the desired string 2 the third. VALUTADATUM is here a word constructed in  
German date notation, e.g.: 18.06.21. In the above example, however, the year is to be output with 4 
digits. For this, the word "20" must be concatenated with the two digits that subtext determines. 

Program 2.9: Give me for each month of the year 2021 the income and expenses with the larger 
transfers!
turnover.csv
sel VALUTADATUM subtext 7!2 = 21
MONTH:=VALUTADATUM nthzahl 2
USE:=VERWENDUNGSZWECK subtext 3!6
RECIPIENT:=BEGUENSTIGTER_ZAHLUNGSPFLICHTIGER subtext 3!6
gib MONTH,PLUS,MINU,(AMOUNT,USE,RECIPIENT b-) m
    PLUS:=AMOUNT if AMOUNT>0 ! 0 ! ++
    MINU:=AMOUNT if AMOUNT<0 ! 0 ! ++
'3
sel  AMOUNT! AMOUNT abs>2'000
rnd 2

 
Program 2.10: Output the account balances of 2021 as a bar chart output!
turnover.csv
rename VALUTADATUM!DATE
sel DATE subtext 7!2=21
gib DATE,BETRAG l-
BALANCE:=  5'200 +BETRAG next BALANCE pred +BETRAG at BETRAG
gib DATE,BALANCE l

Result (bar chart):

26



Here, it is assumed that the initial account balance is 5'200. This number is simply added to the first  
AMOUNT (BETRAG) value in the above example. 

The query possibilities of an account file and other files depend on the existing data. If, for example,  
no name for the recipient is given in the purpose of use of the data records, it is not possible to write 
well readable queries. The better the data material, the simpler the o++o programs and the more  
queries are possible. But this also makes clear that the one who knows the input data can write the  
best o++o programs. A computer scientist, who wants to program general evaluations of such data,  
will never be able to make the variety possible, which an end-user reaches, who knows the contents 
of the records exactly. The intended use alone offers many possibilities to improve the evaluations, 
which are certainly not yet exhausted by many. 

The importance of a simple query language will be magnified when money transactions in Germany 
are also completely cashless. If everyone has access to the data on their purchases at a supermarket 
or gas station, they will be able to determine exactly when and for what they spent their money.

27



3 Table Recursion - Exponential Growth
Recursion is a powerful tool to describe functions or data structures in a short form. It is especially  
used in functional languages like OCaml or HASKEL. We introduce a type of "forward recursion" that  
is easy to use. An initial value is always described by a value or a term and the following values result 
from the direct predecessor by means of a second term, respectively. All generated values are visible 
in the result table.

Program 3.1: Compare linear and exponential growth within 20 years.
YEARl := 0 ..20
LINE  := 9*YEAR +100 
EXPO  := 100. next EXPO pred +% 9 at LINE
rnd 0
YEAR  ::= YEAR text
Result (bar chart):

Result (tab):
YEAR, LINE, EXPO l
0     100   100.
1     109   109.
2     118   119.
3     127   130.
4     136   141.
5     145   154.
6     154   168.
7     163   183.
8     172   199.
9     181   217.
10    190   237.
11    199   258.
12    208   281.
13    217   307.
14    226   334.
15    235   364.
16    244   397.

28



17    253   433.
18    262   472.
19    271   514.
20    280   560.

In the following program way one can describe exponential growth. EXP9 and EXP1 are the program 
lines for this. At the same time, these two columns in the tab representation contain the growth 
values. One percent growth is exponential growth if compound interests are taken into account. This 
is given in both formulas. If one adds in each case only 9% or 1% of 100 to the predecessor, then the 
interest of the interest is not considered. This would be the growth if one takes the interest from the 
interest every year. Our formulas for LIN9 and LIN1 correspond to this.  These straight-line formulas 
and the exponential function curves differ here only at one point. If the operation + is replaced by +
%, linear growth becomes exponential. 
As is well known, exponential growth is far superior to any other growth and thus especially to linear  
growth. The fact that nine percent interest yields a far better total amount after 20 years than one 
percent is shown by the last line of the table (€560 versus €122). Without compound interest, the 
results are €280 and €120, respectively. To improve the comparison with polynomial growth, we  
have included a parabola. 
The green parabola obviously shows a similar behavior in this range of 20 years as the exponential 
growth of 9 percent (dark red). In the next example we will see that this changes completely if we  
look at 200 years instead of 20. The yellow curve (1 % without compound interest) and the red curve  
(exponential growth 1 %) practically did not differ at all.
It should already be mentioned here that the curves are "distorted" so that they look nicer. In school,  
LIN1 would have to be drawn with an angle of 45°. LIN9 would be almost vertical with an angle of  
more than 83°. If you did that, the values of the fast-growing functions would have no place on the 
paper or screen, or you would have to shorten the x-axis (here YEAR) accordingly. But then it would 
look as if all points and curves were vertical. This undistorted real representation of the points is 
realized by the output 'image'. This doesn't look nice, but people should be confronted with reality  
from time to time. Then they can also better classify the visualizations below. 

Program 3.2: How does an amount of 100 Euro develop with a "simple" and normal interest rate of 
1% and 9%? and with quadratic growth within 20 years.
YEARl:= 0 .. 20 
EXP9,EXP1 :=  100.,100. next  preds +% (9,1) at YEAR
PAR  := YEAR * YEAR + 100
LIN9,LIN1 :=  100.,100. next  preds +  (9,1) at PAR
rnd 0
YEAR::=YEAR text
RGBDARKRED :=darkred leftat EXP9
RGBRED     :=red     leftat EXP1
RGBGREEN   :=green   leftat PAR
RGBORANGE  :=orange  leftat LIN9
RGBYELLOW  :=yellow  leftat LIN1
Result (line graph):

29



Result (tab)
YEAR,EXP9,EXP1,PAR,LIN9,LIN1 l
   0 100. 100. 100 100. 100. 
   1 109. 101. 101 109. 101. 
   2 119. 102. 104 118. 102. 
   3 130. 103. 109 127. 103. 
   4 141. 104. 116 136. 104. 
   5 154. 105. 125 145. 105. 
   6 168. 106. 136 154. 106. 
   7 183. 107. 149 163. 107. 
   8 199. 108. 164 172. 108. 
   9 217. 109. 181 181. 109. 
  10 237. 110. 200 190. 110. 
  11 258. 112. 221 199. 111. 
  12 281. 113. 244 208. 112. 
  13 307. 114. 269 217. 113. 
  14 334. 115. 296 226. 114. 
  15 364. 116. 325 235. 115. 
  16 397. 117. 356 244. 116. 
  17 433. 118. 389 253. 117. 
  18 472. 120. 424 262. 118. 
  19 514. 121. 461 271. 119. 
  20 560. 122. 500 280. 120.

The new columns EXP9, EXP1 are defined by two formulas. The first element of the list of years is  
assigned the value of the first formula. The second value is calculated by the second formula, 
where "EXP9 pred" is the value of the predecessor and preds are both predecessors. Therefore, 
we  get  100.  +%  9=109  for  the  second  value  of  the  EXP9  column.  The  third  value  is  again 

30



calculated by the second formula, but now we have to calculate 109 +% 9=118.81 (rounded to 
119 at the end of calculations). In the same way, all the following values are calculated value by  
value using the second formula. The rounding does not cause any inaccuracies, because it is 
done after all calculations. 

Program 3.3: How does an amount of 100 Euro develop with a "simple" and normal interest rate of 
1 % and 9 % and with quadratic growth within 200 years.
YEARl := 0 .. 200
#EXP9  :=  100. next EXP9 pred +% 9 at YEAR
EXP1  :=  100. next EXP1 pred +% 1 at YEAR #EXP9
PAR   := YEAR * YEAR + 100
LIN9  :=  100. next LIN9 pred + 9 at PAR
LIN1  :=  100. next LIN1 pred + 1 at LIN9
rnd 0
#sel  YEAR rest 10 = 0 this condition was applied to reduce the volume of 
#tab output.
YEAR::=YEAR text
'3
#RGBDARKRED :=darkred leftat EXP9
RGBRED    :=red    leftat EXP1
RGBGREEN  :=green  leftat PAR
RGBORANGE :=orange leftat LIN9
RGBYELLOW :=yellow leftat LIN1
Result (line chart without EXP9)

Result (line chart with EXPO9)

31



Result (tab output):

YEAR ,EXP9          ,EXP1 ,PAR   ,LIN9  ,LIN1  l

0               100. 100.     100   100. 100.
10              237. 110.     200   190. 110.
20              560. 122.     500   280. 120.
30            1'327. 135.   1'000   370. 130.
40            3'141. 149.   1'700   460. 140.
50            7'436. 164.   2'600   550. 150.
60           17'603. 182.   3'700   640. 160.
70           41'673. 201.   5'000   730. 170.
80           98'655. 222.   6'500   820. 180.
90          233'553. 245.   8'200   910. 190.
100         552'904. 270.  10'100 1'000. 200.
110       1'308'925. 299.  12'200 1'090. 210.
120       3'098'702. 330.  14'500 1'180. 220.
130       7'335'754. 365.  17'000 1'270. 230.
140      17'366'396. 403.  19'700 1'360. 240.
150      41'112'576. 445.  22'600 1'450. 250.
160      97'328'419. 491.  25'700 1'540. 260.
170     230'411'765. 543.  29'000 1'630. 270.
180     545'468'442. 600.  32'500 1'720. 280.
190   1'291'322'174. 662.  36'200 1'810. 290.
200   3'057'029'208. 732.  40'100 1'900. 300.

32



The green parabola is not visible in the second image. The corresponding points are behind the other 
non-dark red points. Therefore, the parabola looks like a straight line here. The straight line turns 
into a fast-growing curve when the even faster growing dark red exponential curve is taken out of  
the picture. This can only be understood by comparing the scapings of the ordinates (Y-axes). 

Program 3.4: The chess board problem: Place a grain of wheat on the first square, two on the second, 
4 on the third, then eight, and so on. This exponential growth is compared with the polynomial X8 .  
Xl    := 1 .. 64
FIELD := 1  next  FIELD pred *2 at X
HIGH8 := X ^ 8
FIELD::= FIELD if X<30 ! (FIELD div 1'000'000)
HIGH8::= HIGH8 if X<30 ! (HIGH8 div 1'000'000)
'3
Result (tab):

X ,FIELD            ,HIGH8         l
 1                 1               1
 2                 2             256
 3                 4           6'561
 4                 8          65'536
 5                16         390'625
 6                32       1'679'616
 7                64       5'764'801
 8               128      16'777'216
 9               256      43'046'721
10               512     100'000'000
11             1'024     214'358'881
12             2'048     429'981'696
13             4'096     815'730'721
14             8'192   1'475'789'056
15            16'384   2'562'890'625
16            32'768   4'294'967'296
17            65'536   6'975'757'441
18           131'072  11'019'960'576
19           262'144  16'983'563'041
20           524'288  25'600'000'000
21         1'048'576  37'822'859'361
22         2'097'152  54'875'873'536
23         4'194'304  78'310'985'281
24         8'388'608 110'075'314'176
25        16'777'216 152'587'890'625
26        33'554'432 208'827'064'576
27        67'108'864 282'429'536'481
28       134'217'728 377'801'998'336
29       268'435'456 500'246'412'961
30               536         656'100
31             1'073         852'891
32             2'147       1'099'511
33             4'294       1'406'408
34             8'589       1'785'793
35            17'179       2'251'875
36            34'359       2'821'109

33



37            68'719       3'512'479
38           137'438       4'347'792
39           274'877       5'352'009
40           549'755       6'553'600
41         1'099'511       7'984'925
42         2'199'023       9'682'651
43         4'398'046      11'688'200
44         8'796'093      14'048'223
45        17'592'186      16'815'125
46        35'184'372      20'047'612
47        70'368'744      23'811'286
48       140'737'488      28'179'280
49       281'474'976      33'232'930
50       562'949'953      39'062'500
51     1'125'899'906      45'767'944
52     2'251'799'813      53'459'728
53     4'503'599'627      62'259'690
54     9'007'199'254      72'301'961
55    18'014'398'509      83'733'937
56    36'028'797'018      96'717'311
57    72'057'594'037     111'429'157
58   144'115'188'075     128'063'081
59   288'230'376'151     146'830'437
60   576'460'752'303     167'961'600
61 1'152'921'504'606     191'707'312
62 2'305'843'009'213     218'340'105
63 4'611'686'018'427     248'155'780
64 9'223'372'036'854     281'474'976

You  can  see  that  the  polynomial  on  the  sixth  field  has  already  exceeded  the  million,  but  the 
exponential function is only at 32. In the last line, on the other hand, it  becomes clear that the  
exponential function is larger than the polynomial value by a factor of about 10'000. From position  
30 we omitted the last 6 digits to improve the comparability of such large numbers. 

Program 3.5: Calculate the total growth of the gross domestic product in West Germany, East 
Germany, and China in the years from 1992 to 2014 using the growth data given.
<TAB!
YEAR, BRDWA, DDRWA, CHINAWA l
1988   0.      0.    0.
1989   3.9     1.85  4.2
1991  11.09  -47.8  13.56
1992   1.7     6.2  14.3
1993  -2.6     8.7  13.9
1994   1.4     8.1  13.1
1995   1.4     3.5  11.
1996   0.6     1.6   9.9
1997   1.5     0.5   9.2
1998   2.3     0.2   7.8
1999   2.1     1.8   7.6
2000   3.1     1.2   8.4
2001   1.1    -0.6   8.3
2002   0.1     0.2   9.1
2003  -0.1    -0.3  10.

34



2004   1.6     1.3  10.1
2005   0.8    -0.2  11.3
2006   3.8     3.4  12.7
2007   3.3     2.9  14.2
2008   1.      0.6   9.6
2009  -6.1    -3.9   9.2
2010   4.3     3.2  10.6
2011   3.8     1.9   9.5
2012   0.4     0.6   7.7
2013   0.1    -0.1   7.7
2014   1.6     1.4   7.4
!TAB>
sel  YEAR>1991
DDR,BRD,CHINA:=100.,100.,100. next preds +%(DDRWA,BRDWA,CHINAWA) 
               at CHINAWA 
rnd 1
gib YEAR,DDR,BRD,CHINA l
Result (tab output):
YEAR ,DDR  , BRD  , CHINA  l
1992  100.0  100.0  100.0
1993  108.7   97.4  113.9
1994  117.5   98.8  128.8
1995  121.6  100.1  143.0
1996  123.6  100.7  157.1
1997  124.2  102.3  171.6
1998  124.4  104.6  185.0
1999  126.7  106.8  199.0
2000  128.2  110.1  215.8
2001  127.4  111.3  233.7
2002  127.7  111.4  254.9
2003  127.3  111.3  280.4
2004  128.9  113.1  308.8
2005  128.7  114.0  343.7
2006  133.1  118.3  387.3
2007  136.9  122.3  442.3
2008  137.7  123.5  484.8
2009  132.4  115.9  529.3
2010  136.6  120.9  585.5
2011  139.2  125.5  641.1
2012  140.0  126.0  690.4
2013  139.9  126.2  743.6
2014  141.9  128.2  798.6

With a total growth of 100 to 142, East Germany is clearly better in this time interval than West  
Germany with a growth of 100 to 128. Now, we drop the condition YEAR>1991. Furthermore, we  
assume that the above data enclosed in TAB brackets are in the file growth.tab.

Program 3.6: Calculate the growth of the gross domestic product in East Germany, West 
Germany and China in the years 1988 to 2014 with the indicated growth.
growth.tab
DDR,BRD,CHINA:=100.,100.,100.  next  preds +% (DDRWA,BRDWA,CHINAWA) 
               at CHINAWA
rnd 1
YEAR::= YEAR text #subtext 3!2

35



TITEL:="red:DDR  black:BRD  yellow:China"
gib TITEL,(YEAR,DDR,BRD,CHINA l)
RGB:=red    leftat DDR
RGB:=black  leftat BRD
RGB:=yellow leftat CHINA
Result (bar chart):

Result excluding China (bar chart):

36



Result (tab output):
TITEL      ,(YEAR ,RGB     ,DDR ,  RGB     ,BRD ,  RGB     ,CHINA  l)
Red:EastG... 88    1.,0.,0. 100.0  0.,0.,0. 100.0  1.,1.,0.  100.0
             89    1.,0.,0. 101.9  0.,0.,0. 103.9  1.,1.,0.  104.2
             91    1.,0.,0.  53.2  0.,0.,0. 115.4  1.,1.,0.  118.3
             92    1.,0.,0.  56.5  0.,0.,0. 117.4  1.,1.,0.  135.3
             93    1.,0.,0.  61.4  0.,0.,0. 114.3  1.,1.,0.  154.1
             94    1.,0.,0.  66.3  0.,0.,0. 115.9  1.,1.,0.  174.2
             95    1.,0.,0.  68.7  0.,0.,0. 117.6  1.,1.,0.  193.4
             96    1.,0.,0.  69.8  0.,0.,0. 118.3  1.,1.,0.  212.5
             97    1.,0.,0.  70.1  0.,0.,0. 120.0  1.,1.,0.  232.1
             98    1.,0.,0.  70.3  0.,0.,0. 122.8  1.,1.,0.  250.2
             99    1.,0.,0.  71.5  0.,0.,0. 125.4  1.,1.,0.  269.2
             00    1.,0.,0.  72.4  0.,0.,0. 129.3  1.,1.,0.  291.8
             01    1.,0.,0.  71.9  0.,0.,0. 130.7  1.,1.,0.  316.1
             02    1.,0.,0.  72.1  0.,0.,0. 130.8  1.,1.,0.  344.8
             03    1.,0.,0.  71.9  0.,0.,0. 130.7  1.,1.,0.  379.3
             04    1.,0.,0.  72.8  0.,0.,0. 132.8  1.,1.,0.  417.6
             05    1.,0.,0.  72.7  0.,0.,0. 133.8  1.,1.,0.  464.8
             06    1.,0.,0.  75.1  0.,0.,0. 138.9  1.,1.,0.  523.8
             07    1.,0.,0.  77.3  0.,0.,0. 143.5  1.,1.,0.  598.2
             08    1.,0.,0.  77.8  0.,0.,0. 144.9  1.,1.,0.  655.6
             09    1.,0.,0.  74.7  0.,0.,0. 136.1  1.,1.,0.  715.9
             10    1.,0.,0.  77.1  0.,0.,0. 142.0  1.,1.,0.  791.8
             11    1.,0.,0.  78.6  0.,0.,0. 147.3  1.,1.,0.  867.1
             12    1.,0.,0.  79.1  0.,0.,0. 147.9  1.,1.,0.  933.8
             13    1.,0.,0.  79.0  0.,0.,0. 148.1  1.,1.,0. 1005.7
             14    1.,0.,0.  80.1  0.,0.,0. 150.5  1.,1.,0. 1080.2

We have hidden China in the second chart so that it is easier to see Germany's two growth data. For  
example, East Germany produces less than in GDR times. The banking crisis had a major negative 
impact on the East German economy, even though East Germany does not have a bank, ... Too much 
information can obscure what seems to be essential. 

37



4 Hello otto - gimmick
Program 4.1: Output two words.
Hello otto
Result (tabh)
WORTl
Hello otto

Program 4.2: Output a pair of two words.
Hello, otto
Result (tab)
WORT, WORT 
Hello otto

Program 4.3: Output a text with spaces.
"Hello Otto"
Result (tab)
TEXT
Hello otto

Program 4.4: Concatenate two words with spaces.
Hello + " " + otto
Result (tab)
TEXT 
Hello otto

Program 4.5: Give a greeting with a list of two words. 
GREETING := Hello otto
Result (ment)

TABMENT! GREETING
GREETING! WORTl
<GREETING>
Hello 
otto
</GREETING>

Program 4.6: Output two words each with its own column name.
DEAR:=Hello
GREETING:=otto
Result (tab)
DEAR, GREETING 
Hello otto

Program 4.7: Output two words with one column name.
GREETING:= "Hello otto"
Result (tabh)
GREETING 
Hello otto

38



Program 4.8: Sort a set of words.
GREETING:= {otto Hello}
Result (tabh)
TABMENT! GREETING
GREETING! WORTm
GREETING 
Hello otto

Program 4.9: Represent one word by metadata and the other by primary data.
HELLO := otto
Result (tab)
HELLO
otto

39



5 o++o for kindergarten?
The stroke list is historically the first representation of a number. It could already be a million years  
old. Notched wood has been shown to be 150 thousand years old. Concepts first developed in history 
are usually simpler than later concepts. That's why tally charts should have a broader scope even in  
kindergarten. 
The following goals could be pursued with the use of o++o in kindergarten: 

1. By  presenting  decimal  numbers  and  stroke  lists  at  the  same  time,  a  child  can  better 
appreciate the magnitude of numbers. For example, the number one hundred differs from 
the  number  ten  only  by  one  digit  zero.  The  corresponding  stroke  lists,  however,  differ 
considerably. 

2. The operation symbols + * - : could be taught. They are probably easier to explain on stroke  
lists. The stroke lists could be converted to decimals and vice versa. 

3. The  algorithm  behind  the  stroke  list  operation  (gib  statement)  could  be  taught  using 
appropriate examples. 

5.1 Stroke Lists
Counting animals of different species could give the following small intermediate table:

Elephant | | | |
Deer     | | 
Pig      | | |

If another deer comes, a stroke is added to the second line. If, on the other hand, a turkey comes, a  
new line must be added with the name turkey and a stroke at the end. 

This  already poses many problems, although preschoolers can already create such a table if  the 
words have been replaced by pictures or single letters. It is not clear how many columns this table 
has if only "normal" tables are considered. If we allow structured tables, we can say that this table 
contains a column ANIMAL and a column STROKE, but the values of the column STROKE can be  
"repeated" for each animal. An associated schema ANIMAL,STROKEl m or 

ANIMAL,STROKEl l would express this. Where l is an abbreviation for list and m stands for set.  
These symbols are again used postfix, i.e. they are placed after its arguments. The m is necessary in a  
gib-part so that each animal appears only once in the target table. 

Since many children are interested in cars, one could count cars analogously to counting animals.  
This could result in the following table:

Golf     | | | |
A6       | | |
Polo     | | | | |
Wartburg | | |
A8       | |

Is it possible in kindergarten to increase the structural depth of the table when counting? Then the  
following (hsqh-) table could have been created:

VW | | | | | | | | |
 Golf | | | |
 Polo | | | | |
Audi | | |
 A6 | | |

40



 A8 | |
IFA | | | 
 Wartburg | | |

5.2  The conversion operations stroke list to zahl and vice versa
As a dash (stroke) o++o uses the “|” character.  We will illustrate the operations in the following text 
with self-explanatory examples.

Program 5.2.1: Stroke list to number Result 
 | | |  zahl 3

Convert a number into a list of strokes:

Program 5.2.2: Number to tally list Result 
| *l 4 | | | |

5.3  The operations + *
Different representations of an addition task. The first input type again determines the output type.

Programs 5.3.1: Four plus four Results 
 4 + 4 8
 4 +  | | | | 8
 | | | |  +  | | | | | | | | | | | |
 | | | |  + 4 | | | | | | | |
 | *l (4 + 4) | | | | | | | |

Different representations of a multiplication task:

Programs 5.3.2: Ten times ten Results 
10 * 10 100
Xl:= 1 ..10 
Yl:= | *l 10 at X

 1 | | | | | | | | | |
 2 | | | | | | | | | |
 3 | | | | | | | | | |
 4 | | | | | | | | | |
 5 | | | | | | | | | |
 6 | | | | | | | | | |
 7 | | | | | | | | | |
 8 | | | | | | | | | |
 9 | | | | | | | | | |
10 | | | | | | | | | |

Programs 5.3.3: Two representations of a 
subtraction task

Result 

 10 - 5 5
 | | | | | | | | | |  - 5 | | | | |

Program 5.3.4: Place next to each number smaller Result

41



than 16 the corresponding stroke list
Xl:=0 ..15
Y := | *l X

 0 
 1 |
 2 | |
 3 | | |
 4 | | | |
 5 | | | | |
 6 | | | | | |
 7 | | | | | | |
 8 | | | | | | | |
 9 | | | | | | | | |
10 | | | | | | | | | |
11 | | | | | | | | | | |
12 | | | | | | | | | | | |
13 | | | | | | | | | | | | |
14 | | | | | | | | | | | | | |
15 | | | | | | | | | | | | | | |

5.4 o++o programs to kindergarten?
Which of the following programs are useful for understanding and which are teachable? When is a  
syntax too incomprehensible? These questions are outlined below. 
Multiplication is counting the number of strokes in a rectangle?

Program 5.4.1: Each of four children gets 3 apples. 
How many apples are there in total ?

Result (tabh)

NAMEl := Ernst Clara Sophia Claudia
APPLEl:= | | | at NAME
++

Intermediate result after the first 2 lines
NAME,   APPLE l
Ernst   | | |
Clara   | | |
Sophia  | | |
Claudia | | |
Final result (++ stands for many additions)
12

Program 5.4.2: Each of four children gets 3 apples. 
How many apples are there in total?

Result (tabh)

NAMEl := Ernst Clara Sophia Claudia
APPLEl:= | | | at NAME
gib APPLEl
++1

Intermediate result after the first 2 lines
NAME,   APPLE l
Ernst   | | |
Clara   | | | 
Sophia  | | |
Claudia | | |
Final result (++1 counts)
12

Program 5.4.3: Counting different kinds of animals
ANIMALl:=elephant deer elephant pig elephant deer pig elephant
STROKE:= |
gib ANIMAL,STROKEl m

42



Result (tabh)
ANIMAL  ,STROKEl  m 
deer     | |
elephant | | | |
pig      | | |

Program 5.4.4: Counting cars
<TAB!
BRAND,COLOR,  TYPE, WEIGHT l
VW    Blue    Polo   1250
IFA   Papyrus 500     580
VW    Blue    Golf   1450
Audi  Yellow  Quatro 2070
VW    Blue    Polo   1380
IFA   Beige   601     620
VW    Red     Golf   1400
Audi  Red     Quatro 2100
IFA   Beige   601     620
VW    Beige   Polo   1300
!TAB>
gib BRAND,CNT,(COLOR,CNT m) m 
    CNT:=TYPE ! ++|

Result (tabh)
BRAND,CNT,     (COLOR,  CNT l) l
Audi  | |       Yellow  |
                Red     |
IFA   | | |     Beige   | |
                Papyrus |
VW    | | | | | Beige   |
                Blue    | | |
                Red     |

Programs 5.4.5: 3 Division Operations Results 
13 div 4 3
13 : 4 3.25
13 divrest 4 3,1

All these operations seem too complicated for kindergarten. 
If  one calculates  not  only  with  numbers  but  also with  tables,  one could introduce new division 
operations. However, this cannot be discussed to the end at this point.

Program 5.4.6: Problem: Distribute 15 apples 
among 4 children. Who designs the o++o program?

Result (tabh)

Ernst   | | | |
Clara   | | | |
Sophia  | | | |
Claudia | | |

Another  very  important  operation  of  digitization  is  selection.  Would  a  database  operation  like 
selection be teachable to some degree?

43



given:

NAME,   AGE l
Ernst   8
Clara   6
Sophia  6
Claudia 4
Ulrike  5
Käthe   4

myfamily.tab

Program 5.4.7: How old is Claudia? Result
aus myfamily.tab
sel Claudia

NAME,   AGE l

Claudia 4

sel abbreviates selection.

Program 5.4.8: All six years old children are 
wanted

Result

aus myfamily.tab
sel AGE = 6

NAME,  AGE l

Clara  6
Sophia 6

Program 5.4.9: All children younger than 6 are 
wanted

Result

myfamily.tab
sel AGE < 6

NAME,   AGE l

Claudia 4
Ulrike  5
Käthe   4

44



6 o++o in School Lessons
There are many possible applications for o++o in school. Especially in the subjects, mathematics and  
computer science. But, also in all other subjects o++o can be used to extract data from given tables,  
documents. We do not want to present all possible typical query examples here. We want to limit  
ourselves to the so-called "brute force algorithms" for mathematics. These are the simplest and often 
the methodologically best algorithms. Since all these algorithms are implemented in main memory, 
we need not worry about efficiency. Now we start with a simple algorithm. We hope that it is the 
simplest program for a zero. The section ends with programs for grading students and considerations 
that may be important for kindergarten, too.

Program 6.1: Calculate in a simple way the zero of the 
sine function in the interval [3, 4].

Result

Xl:= 3 ... 4! 0.000’01
sel  X sin <0
sel  X pos =1

Xl

3.1416

Program 6.2: Calculate in a simple way the zero of the 
sine function in the interval [3, 4].

Result

Xl:= 3 ... 4! 0.000’01
sel  X sin * (X +0.000’01 sin) <=0

Xl

3.14159

Program 6.3: Calculate the integer zeros of the 
polynomial  "X2 -15X+56".

Result (tabh)

Xl:= -100 .. 100
sel  X poly [1 -15 56]=0
# or sel  X- 15 *X + 56=0

Xl

7 8

With the following programs, it is shown that students who have not learned integral and differential 
calculus are nevertheless able to understand and use their school applications, which are essentially: 
1. How large are areas under curves? 
2. What are local extrema of functions? 

Program 6.4: Calculate the area under a circular arc 
with diameter 4 in the interval [0, 2].

Result

Xl:= 0 ... 2!0.0001
HEIGHT:= X*X - 4 abs sqrt
RECTANGLE:=HEIGHT*0.0001
gib AGG   AGG:=RECTANGLE!++

AGG

3.14169223791

Program 6.5: Query 6.4, but shorter and more precise.
PI:=0 ... 2!0.000'001 poly [-1 0 4] sqrt*0.000'001 ++ '3

Result 
PI
3.141'593'653'28

Program 6.6: Determine pi by zero determination with interval bisection   
NR,LE,RI l := 3.,4. while NR <39 ! preds ++ :2,RI pred 
              if preds ++ :2 sin >0 ! LE pred, (preds ++ :2) 

45



last
PI:=pi
'3       
Intermediate result after first and last program line (tab):
NR, LE ,             RI l
 1  3.               4.
 2  3.               3.5
 3  3.               3.25
 4  3.125            3.25
 5  3.125            3.187'5
 6  3.125            3.156'25
 7  3.140'625        3.156'25
 8  3.140'625        3.148'437'5
 9  3.140'625        3.144'531'25
10  3.140'625        3.142'578'125
11  3.140'625        3.141'601'562'5
12  3.141'113'281'25 3.141'601'562'5
13  3.141'357'421'88 3.141'601'562'5
14  3.141'479'492'19 3.141'601'562'5
15  3.141'540'527'34 3.141'601'562'5
16  3.141'571'044'92 3.141'601'562'5
17  3.141'586'303'71 3.141'601'562'5
18  3.141'586'303'71 3.141'593'933'11
19  3.141'590'118'41 3.141'593'933'11
20  3.141'592'025'76 3.141'593'933'11
21  3.141'592'025'76 3.141'592'979'43
22  3.141'592'502'59 3.141'592'979'43
23  3.141'592'502'59 3.141'592'741'01
24  3.141'592'621'8  3.141'592'741'01
25  3.141'592'621'8  3.141'592'681'41
26  3.141'592'651'61 3.141'592'681'41
27  3.141'592'651'61 3.141'592'666'51
28  3.141'592'651'61 3.141'592'659'06
29  3.141'592'651'61 3.141'592'655'33
30  3.141'592'653'47 3.141'592'655'33
31  3.141'592'653'47 3.141'592'654'4
32  3.141'592'653'47 3.141'592'653'93
33  3.141'592'653'47 3.141'592'653'7
34  3.141'592'653'58 3.141'592'653'7
35  3.141'592'653'58 3.141'592'653'64
36  3.141'592'653'58 3.141'592'653'61
37  3.141'592'653'58 3.141'592'653'6
38  3.141'592'653'58 3.141'592'653'59
Final result: 
NR, LE,              RI  l,           PI
38  3.141'592'653'58 3.141'592'653'59 3.141'592'653'59

 

Program 6.7: Calculate the first 7 Fibonacci numbers.
Xl:= 1 .. 7
FIB1,FIB2:= 0,1 next FIB2 pred; preds ++ at X

Result (tab)
X, FIB1, FIB2 l
1  0      1

46



2  1      1
3  1      2
4  2      3
5  3      5
6  5      8
7  8     13

 

Program 6.8: Calculate the Pascal triangle up to the exponent 9.
Nl:= 0 .. 9
XTUP:= 1 next 0,preds + (preds,0) at N
text
Result (tab)
N, XTUP l
0  1
1  1,1
2  1,2,1
3  1,3,3,1
4  1,4,6,4,1
5  1,5,10,10,5,1
6  1,6,15,20,15,6,1
7  1,7,21,35,35,21,7,1
8  1,8,28,56,70,56,28,8,1
9  1,9,36,84,126,126,84,36,9,1

Now we present a brute force algorithm for a maximum.

Program 6.9: Find in a simple way for the local maximum of the sine function in the interval [1, 3].
LOCMAX:=1 ... 3.!0.000’01 sin max '3

Result 
LOCMAX
0.999'999'999'993

Program 6.10: Calculate the sine function and an approximation of the first derivative in the interval 
[0,4].
Xl:= 0 ... 10!0.01
SINUS := X sin
DERIVATIVE:=X+0.000'1 sin -(X sin):0.000'1
RGBSIN:=green leftat SINUS
RGBDERIVATIVE:=red leftat DERIVATIVE

Result (image): 

47



Result (tab): It consists of 1001 lines.
X    ,RGBSIN  ,SINUS            ,RGBDERIVATIVE ,DERIVATIVE       l
 0.   0.,1.,0.  0.               1.,0.,0.        0.999999998333
 0.01 0.,1.,0.  0.00999983333417 1.,0.,0.        0.999949498758
 0.02 0.,1.,0.  0.0199986666933  1.,0.,0.        0.999799005067
 0.03 0.,1.,0.  0.0299955002025  1.,0.,0.        0.999548532308
 0.04 0.,1.,0.  0.0399893341866  1.,0.,0.        0.999198105529
 0.05 0.,1.,0.  0.0499791692707  1.,0.,0.        0.998747759772
 0.06 0.,1.,0.  0.0599640064794  1.,0.,0.        0.998197540071
 0.07 0.,1.,0.  0.0699428473375  1.,0.,0.        0.997547501448
 0.08 0.,1.,0.  0.0799146939692  1.,0.,0.        0.996797708907
 0.09 0.,1.,0.  0.089878549198   1.,0.,0.        0.995948237425
 0.1  0.,1.,0.  0.0998334166468  1.,0.,0.        0.994999171949
...
 9.98 0.,1.,0. -0.527131998452   1.,0.,0.       -0.849757059217
 9.99 0.,1.,0. -0.535603334614   1.,0.,0.       -0.844442914713
10.   0.,1.,0. -0.544021110889   1.,0.,0.       -0.83904432662

The following examples are based on a fictitious table of grades with exams:

NAME,      (SUBJECT,   EXAl,MARKl l)l
Einstein    German     1 3  1 2 1 3 1
            Physics    1 a  1 2 1 1 1 1
            Algebra    1 2  1 1 2
            Art        3 3  2 1
Gauss       German     2 3  1 2
            Algebra    1 1  1 1 1
Guericke    physics    s 1  1 2 1
            German     2 1  1 2 1 1
            Algebra    1 1  2 1 1 2
Newton      Physics    1 1  2 1 1
Confucius   Philosophy 1 1  1 1 1 1
            Chinese    1 1  2 1 1
Marx        economics  1 1  2 1 2 1
            Philosophy 1 2  1 3 1
Brecht      German     1 1  1 1 1 1 1 1 1 1
            Philosophy 1 2  2 1 1 2
Cantor      set theory 1 1  1 1 1

Tabment 6.1: guys.tabh (s: sick, a: absent)

Program 6.11: Calculate the weighted average scores for each person and subject and the total 

48



value. Sort the data.
aus guys.tabh
gib AVG,(NAME,AVG,(SUBJECT,AVG m)m)
    AVG:=EXAl ++: *0.6 + (MARKl ++: *0.4)! ++:
rnd 1

Result (tab): 
AVG ,(NAME     ,AVG  ,(SUBJECT   ,AVG  m) m)
1.4   Brecht    1.3    German     1.0
                       Philosophy 1.5
      Cantor    1.0    set theory 1.0
      Confucius 1.1    Chinese    1.1
                       Philosophy 1.0
      Einstein  1.7    Algebra    1.4
                       Art        2.4
                       German     1.8
                       Physics    1.1
      Gauss     1.6    Algebra    1.0
                       German     2.1
      Guericke  1.2    Algebra    1.2
                       German     1.4
                       physics    1.1
      Marx      1.4    Philosophy 1.6
                       economics  1.2
      Newton    1.1    Physics    1.1

If we want to calculate the average after the completion of the first test, we can use the following  
formula:

AVG:= EXAl nth 1 *0.3 + (MARKl ++: *0.7)! ++:

Program 6.12: Determine all subjects and individuals that received a 1 and a subsequent 3.
aus guys.tabh
sel NAME SUBJECT! MARK=1 & MARK succ=3      #succ = successor

Result: 
NAME,   (SUBJECT,   EXAl, MARKl l)l
Einstein German     1 3   1 2 1 3 1
Marx     Philosophy 1 2   1 3 1

Now we turn to other "simple" problems. It  may be that these tasks are important not only for 
school, but also for kindergarten. Now it is commonly assumed that addition of natural numbers is 
the easiest  and division the most  difficult  of  the four basic  arithmetic operations.  This  could be 
wrong. We did experiments with a 3-year-old and a 6-year-old kindergartener. The task was to divide 
11 apples among four children. The four children were represented by photographs. Neither the 6-
year-old child nor the 3-year-old child had a problem. They obtained the same result in the division. 
It was presented in a table:

CHILD,  APPLE 
Ernst   | | |
Clara   | | |
Sophia  | | |

49



Claudia | |
Tabment 6.1: 11 divided by 4

What can we learn from this experiment? 
1. Young children cannot divide an apple. They do not yet have a clear understanding of 1/2 or 

2/3, ..., so that "ordinary" division cannot be taught. 
2. There is no remainder in the division; there is no reason to waste anything. 

Let's  consider  addition,  the next  simplest  operation.  The simplest  representation of  the number 
three are three strokes. The same is true for any number of other natural numbers. Here we consider 
only two numbers: 3 and 4. 
We have to represent them by lists or bags (multisets) because the set {| |} is the same as {|}. The  
result of each operation would be one.

APPLE l
| | |

three.tabh

APPLE l
| | | |

four.tabh 

Program 6.13: three plus four Result
aus three.tabh,four.tabh
gib APPLEl

APPLEl

| | | | | | |

Here, too, it becomes clear that such a process could require only a small amount of effort in the  
classroom. But what is the result of 4 apples and 3 pears? Since each pair of two tabments is again a 
tabment, the result of this "addition" could be a tabment of the type APPLEl,PEARl.

Multiplication can also be handled in a very simple way. Consider the very simple question of how 
many apples are needed for 4 children if each child wants 3 apples:

Program 6.14: four times 3 Intermediate result after line 2
CHILDl:= Ernst Clara Sophia Claudia
APPLEl:= | | |  at CHILD
gib APPLEl

CHILD,  APPLE l

Ernst   | | |
Clara   | | |
Sophia  | | |
Claudia | | |

Not only this multiplication algorithm is simpler, it also makes it clear that multiplication is essentially  
calculating the area of a rectangle. 
We also obtain the above intermediate result by the following program:

CHILDl:= Ernst Clara Sophia Claudia
APPLES:= | | |  at CHILD
gib CHILD,APPLES l # APPLES is atomic, i.e. each apple list is transferred 
                   # as one unit

If we want to apply the subtraction operation to collections with different elements (sets), the 
subtraction can be expressed by a selection.

50



Program 6.15: Subtraction (difference) with sets Result
NAMEm := {Ernst Clara Ulrike}
sel- NAME in {Ulrike Sophia}

NAMEl

Clara Ernst

We conclude this section with the following statements: 
1. The result of our "arithmetic operations" are not numbers, but tables. 
2. Dealing  with  tables  is  probably  easier  than  dealing  with  numbers,  because  the  level  of  

abstraction is lower. 

51



7 Multiplication, School and Digitization
In this chapter, it will be shown that the common multiplication algorithm for decimal numbers could 
and should be supplemented by simpler ones and that, more generally, deep digitization should be 
pursued. Deep digitization can probably only be implemented through mathematical understanding.  
Unlike shallow digitization, where the user is usually presented with a computer result by simply  
clicking a button and is often unsure if that result is correct, deep digitization should allow the user to 
understand the result in the same way as calculating 132.66 times 453.2 with a calculator. The big 
difference between today's use of calculators and today's use of powerful computers is that users  
have spent years learning the single data operations:  + - * : sin log etc.  Mass data 
operations  are  not  yet  on  the  curriculum.  Selection -  sometimes  called  a  filter  operation -  and  
operations to merge table contents for restructuring ... we count among the mass data operations.  
These are not applied to individual numbers, but to possibly very large structured tables that may 
contain words and text in addition to numbers. If the user has understood such mass data operations 
and they have been implemented within the framework of a programming language, he can also 
interpret these results and, in case of doubt, correct, change or improve them.

7.1  Who can multiply in their head?

Incident 1 
In a mathematics exam that a second-year pharmacy student from Bologna had to take, the student 
had to calculate 7 times 8, among other things. The pharmacy student: 59 
The algebra professor: But 59 is not an even number. The pharmacy student: 64 

Incident 2 
Wallerie - an Erfurt kindergarten girl in the large group - is already a student today. 
I gave her a task: How many effervescent bottles does a crate with 4 rows contain if there are 5  
bottles in each row? 
Wallerie thought for a while: Nineteen 
Her father - a young engineer: You don't calculate, you guess. 

Incident 3 
I ask Isabella, a second-grade pupil from Gerwisch: How much is 3 times 4? After a while: Twelve 
The father: That took a long time. 

From the second incident,  I  conclude that preschoolers have already understood the essence of 
multiplication. Of course, it is possible that some preschoolers.... cannot calculate 4 times 5 exactly in 
their head. But 3 times 4 I would trust any child to do. There is no question that they will never be 
able  to  calculate  12  times 13  in  this  way.  In  fact,  I  don't  think  any  human being  is  capable  of  
calculating 7 times 8 in their head. Older adults have had to calculate(?) the multiplication tables so  
many times in school that they can only do it by heart and don't remember how they multiplied as a 
child.  It  used to  be  very  important  to  know the multiplication table  by  heart  because it  was  a  
prerequisite for written decimal multiplication. 
My opinion: In the many school years that the multiplication tables were taught, the original neuron 
connections or brain cells were "overwritten" and are practically no longer present. 

Therefore, the vast majority of adults are not able to perform the original multiplication in their 
heads. They can only do multiplication tables by heart and cannot do written decimal multiplication 
in their heads. Even when multiplying smaller numbers such as 29 times 63, they will  work with 
easier-to-use  arithmetic  laws  and  not  use  the  algorithm  in  which  their  teachers,  parents  and 
grandparents invested a lot of time and effort. Based on incidents 1, 2, and 3, one can even surmise 
that many adults don't even know that children have to do math to get the results. When you're that 

52



young, you can't memorize it yet without doing the math. An almost correct answer indicates that  
arithmetic has been done.

7.2  Who can multiply in writing?
Calculating 7 times 8 with a pencil should be mastered by every child in the second grade. The 
prerequisite is that you can imagine the numbers up to one hundred. You can do that if you can  
count to a hundred. If you illustrate the task, many children should be able to solve it even faster: 
Each of the seven children wants eight candies. How many candies do you need to buy? 
1. Write the names of seven children one below the other. 
2. Put eight strokes legibly after each name. 
3. Count all the strokes. 
4. Convert the result into a decimal number. 

If someone wants to calculate 100 times 100 in this way, the probability of getting a correct 
result is very low. Moreover, it would take a very, very long time. In the age of powerful computers,  
however, these arguments should be insignificant. What matters is to have a clear understanding of  
an algorithm. The question remains: 
Is stroke list multiplication the simplest multiplication algorithm?

7.3  Who can program the multiplication?

Program 7.3.1: Stroke list multiplication in o++o (7*8)
NAMEl:=Tina Ernst Clara Sophia Ulrike Claudia Kathe
STROKEl:= | | | | | | | |  at NAME
gib STROKEl
++1

Intermediate result after 2 lines in tabh format
NAME,   STROKEl  l
Tina    | | | | | | | |
Ernst   | | | | | | | |
Clara   | | | | | | | |
Sophia  | | | | | | | |
Ulrike  | | | | | | | |
Claudia | | | | | | | |
Kathe   | | | | | | | |
Final result
56

If you are only interested in the end result, you can also replace all names with one. You could also 
write a gib statement for the last two lines that counts through regardless of the given structure:

Program 7.3.2: Shortened stroke list multiplication in o++o
NAMEl  := otto *l 7
STROKEl:= | *l 8 at NAME
gib SEVEN_TIME_EIGHT
    SEVEN_TIMES_EIGHT:= STROKE! ++1

Result
SEVEN_TIMES_EIGHT
56

53



This program can only be formulated because o++o works with structured tables. Everybody should 
judge for himself which multiplication is more child-like and therefore easier to understand. At this 
point  it  should  be  mentioned  that  o++o  multiplication  is  much  more  general  than  in  other  
programming languages. However, this does not mean the program above, but the operation hidden 
behind the symbol *. For example, you can multiply a whole tabment by a number:

Program 7.3.3: Convert several German net prices with o++o into gross prices.
GROSSl:=66.1 675.8 77 *1.19

Result (tabh)
GROSSl
78.659 804.202 91.63

The section concludes with a multiplication algorithm that is reminiscent of pivot tables, but very  
close to the decimal multiplication algorithm taught in schools today. 
The pivot element can be determined with 2 o++o lines.

Program 7.3.4: Multiplication of a list of length 2 by a triple using matrix multiplication (13*124)
[10 3] *mat (100,20,4)
cross ++

Intermediate result after the first line in tab format
ZAHL ,ZAHL ,ZAHL  l

1000  200   40
 300   60   12
Final result in (.tab)
ZAHL ,ZAHL ,ZAHL ,SUM?  l
1000  200   40    1240
 300   60   12     372
1300  260   52    1612

The final result of multiplying 13 times 124 is 1612. 
Math teachers must find out whether this multiplication is easier to teach than today's multiplication  
with decimals by having entire classes multiply using both methods.

Program 7.3.5: A complete o++o-program for multiplication, based on matrix-multiplication
X:=4321
Y:=678  
XX:=X cut 1 zahl
YY:=Y cut 1 zahl
XL:=XX ++1 
YL:=YY ++1 
BXl:= 10 ^ (XL- 1 ... 0! -1) * XX
BYl:= 10 ^ (YL- 1 ... 0! -1) * YY
MATRIX:= BXl *mat (BYl transpose)
gib MATRIX
cross ++
last
gib SUM 
'3
Result (tab)
SUM

2'929'638

54



cut and other operations could also be used advantageously for teaching German or English. Each 
letter is converted into a digit by the conversion function zahl. Teaching cross-multiplication in one 
form or another would also prepare students for the use of pivot tables, which play a large role in 
today's practice.

The last program in this section is intended to implement pivot multiplication with the help of user 
defined o++o-operations.

Program 7.3.6: More detailed matrix multiplication of factors 7'653 and 4'322 in o++o
defop $X myop.powerlist = begin
X1l:=$X cut 1 zahl
gib X1 l-
XPOT:= (10 ^ (X1 pos - 1))
X2:= XPOT * X1
gib X2l-
end
aus 7'653 myop.powerlist
*mat 4'322 myop.powerlist transpose
cross ++
last
gib SUM
'3

Final result (tab)
33'076'266

7.4 Stroke list multiplication versus decimal multiplication
The written decimal multiplication had a great importance because many people could calculate with  
it even two 8-digit numbers correctly with high probability. The correctness could be improved even 
more by the sample of nine. In addition, it was by far the fastest algorithm in earlier practice. 
The later  slide rule  was faster,  but  not  as  accurate.  The number table  with  logarithms was too 
demanding for some. In the age of computers, both techniques have already been mothballed. 
The written decimal algorithm is still used by many people ..., and everyone who masters it is proud  
of his skills. The question is: Can we replace the decimal multiplication algorithm in school with the  
stroke list multiplication or/and complement it with other multiplication algorithms? 
The dash multiplication has not only the advantage that it can be taught already in an earlier class. If  
this algorithm is repeated accordingly, everybody notices that just this multiplication realizes the 
standard  application  -  a  rectangular  area  calculation.  To  derive  this  application  from  decimal  
multiplication seems too difficult. Given the programmability of both algorithms, it should quickly 
become  clear  that  dash  multiplication  is  far  superior  to  decimal  multiplication.  The  dash  list  
multiplication above requires 4 steps to be processed in sequence. In particular, there is no loop and 
no recursion. On the other hand, the above algorithm shows that a programming language must be 
able to work with structured tables in order to provide user-friendly multiplication programs. Since 
this stroke multiplication processes mass data in a sense, it prepares better for the digitization of 
society than the algorithm taught in schools today. If it is desired that everyone should be able to 
program multiplication, simpler multiplication algorithms must be taught. 

7.5  How o++o could enrich the school curriculum?
We have developed a data model with an associated programming language o++o, which should not 
only be the basis for information systems for business, but also offer many advantages for school  
teaching. Since the language o++o is based on mathematical concepts, it should be integrated into 
mathematics  classes.  But,  also  in  the  other  subjects  o++o  can  be  used  usefully,  because  the 

55



extraction and visualization of information from the German Wikipedia seems to be important for 
every school subject. A programming language should enable students to better solve the many tasks  
they will face in their future. This is especially true for the digitalization ahead of us. Digital actually 
means that everything comes down to two things - zero and one. I can't imagine anyone tracing the  
powerful stroke list operation behind the gib statement, for example, to such thinking. Our axioms of  
the stroke list operation were formulated at a high abstract algebraic level, where thinking in terms 
of  zeros  and  ones  is  only  a  hindrance.  For  mathematics,  abstraction  is  more  important  than 
digitization in the true sense of the word. Although o++o has so far only dealt with questions of 
content, CSS in o++o can also be used to realize many questions of format. The following example  
shows that it also makes sense to capture form questions directly in o++o:

Program 7.5.1: The product of 5 numbers in thousands format in o++o
28'911 5'233 199 6'311 6'781 ** '3

Result 
1'288'424'128'758'129'267

o++o could perhaps be taught in the lower grades:

Program 7.5.2: The sum of the first hundred numbers (Gauss problem)
1 .. 100 ++

Result 
5050

I think that these and many other difficult problems could be taught in the lower grades as well. So as 
not to be misunderstood at this point. We should already be drawing on experience gained decades 
ago with calculators when introducing digitization in schools. Also, the too early and too wide use of  
calculators has probably led to many students having a poorer command of basic arithmetic..., worse 
at calculating in their heads than in earlier grades. With incorrect inputs to the calculator, many also  
seem unable to estimate the expected magnitudes of the results. For this reason, the calculator is not 
allowed here until seventh grade. 
For example, I  even think that spelling programs like WORD should not be taught in school until 
about the seventh grade, either. If a student has experienced firsthand that WORD corrects almost all 
of his spelling mistakes, it is very difficult to make him understand ... that his own spelling skills are 
important for his  future.  Similarly,  I  would have the introduction of digital  whiteboards critically 
examined. 
Last December, at the University of Halle, I noticed that mathematics professors were still working  
with blackboards and ordinary chalk.

Program 7.5.3: Execute an o++o program in the second class on the blackboard. 
4 3 1 12 ++

This calculation on the blackboard with chalk or pencil could also prepare for future digitization. In  
addition, for motivation reasons, the teacher could already demonstrate to the lower grade students 
that the symbol ++ can be used to solve the Gaussian problem or even larger problems. In my 
opinion,  many  people  do  not  actively  know  how  to  formulate  a  conditional,  although  it  is  not 
difficult.  However,  it  is  not part of the curriculum. The conditions that select all  people living in  
Magdeburg  LOCATION=Magdeburg  or  filter  out  all  rivers  that  are  longer  than  1000  km 
LENGTH>1000 do not look complicated. Many can't do that, because today's search engines don't 
ask for that or can't handle it. But if I need to spontaneously extract important information from a 
company database in a future company, I need to know that. 
In my opinion, students' problem-solving skills can be improved in many ways. Even the applications 
of  differential  and  integral  calculus  could  be  taught  in  secondary  schools  without  having  to 

56



understand the difficult theories of Leibniz and Newton. With o++o, we can calculate areas under  
curves in a short line of code without using hard-to-read loops. An approximation of the area under a 
part  of  the  first  sinusoidal  arc  can  be  calculated  in  one  line  using  Archimedes'  2000  year  old 
algorithm:

Program 7.5.4: This o++o program does not require integral calculus!
1 ... 2!0.000’1 sin *0.000’1 ++

Result 
0.956536680039

In the following, an application of differential calculus is presented, which can be performed without 
knowledge of differential calculus.

Program 7.5.5: An o++o program to approximate the local minimum of the parabola (a special 
polynomial) "3 x2 + 4 x + 6"!
-10 ... 10!0.0001 poly 3 4 6 min

Result 
4.66666667

I believe that this can be taught already in every 9th or 10th grade, without going into details here. 
When I talk to students, I sometimes have the impression that computer science classes are more 
about form issues (HTML, ...) than content. We know that it is very hard, but we should still reach the  
goal given by Dr. Angela Merkel: Everyone should learn to read and calculate, but also to program . 
If you look at programming languages like C, Java or Python, the goal is not feasible. For that, you  
need simpler languages that are able to solve end-user problems with short programs. C and Co. had  
other goals. They should serve to program systems on which hundreds or more people can work,  
which can contain many millions of lines of code and still work performantly. o++o follows the new 
paradigm of table-oriented programming and has above all the goal formulated by A. Merkel. If o++o 
had not put methodical and pragmatic questions in the foreground from the beginning, this goal 
would not be realizable also with o++o. Mastering operations for mass data seems to be necessary 
for a long-term digitization strategy. 

7.6  Can the stroke list operation be taught as early as third grade?
As already mentioned, the gib statement, which includes the dash list operation, is a powerful tool. It  
can be used not only to sort normal flat tables, but also any tables. At the same time, you can also  
use aggregations such as ++ (sum), ++1 (count), etc. If third grade students have difficulty with a 
formal  syntax,  it  does  not  necessarily  mean that  the  algorithm behind it  cannot  be  taught.  For  
example, they could count animals. This does not have to be just a number. A table that determines 
the number for each type of animal would certainly be easy to teach as well:

Program 7.6.1: Counting animal species with strokes
ANIMALl:=donkey sow boar donkey boar sow donkey
STROKE:= | at ANIMAL
gib ANIMAL,STROKEl m

Result (tabh)
ANIMAL, STROKEl m

Boar    | |
Donkey  | | |
Sow     | |

57



The following example is a bit more demanding, because the results table is structured.

Program 7.6.2: Counting in structured tables
<TAB!
BRAND,COLOR,  TYPE,  WEIGHT l
VW    Blue    Polo   1250
IFA   Papyrus 500     580
VW    Blue    Golf   1450
Audi  Yellow  Quatro 2070
VW    Blue    Polo   1380
IFA   Beige   601     620
VW    Red     Golf   1400
Audi  Red     Quatro 2100
IFA   Beige   601     620
VW    Beige   Polo   1300
!TAB>
gib BRAND,CNT,(COLOR,CNT m) m 
    CNT:=TYPE! ++|

Result:
BRAND, CNT,       (COLOR,  CNT m) m
Audi   | |         Yellow  |
                   Red     |
IFA    | | |       Beige   | |
                   Papyrus |
VW     | | | | |   Beige   |
                   Blue    | | |
                   Red     |

You can perhaps imagine children counting and sorting at the blackboard using this algorithm. In o+
+o a set (m) or a multiset (bag) is always sorted by the first column names. In the example above  
these are BRAND and COLOR. 
That is, children can presumably sort data in structured tables. However, today's computer science 
students do not learn a sorting algorithm for structured tables. An article of mine in the German 
Wikipedia, which included especially this sorting, was deleted, because it "does not belong to the 
basic knowledge of a computer scientist". 

58



7.7  Does the school calculator from Texas-Instruments calculate wrong?

The TI-30 ECO RS calculator shown on the left, which has 
been  approved  by  German  education  ministries  as  a 
school pocket calculator, gives the following results for 
the task

2 ^ 2 ^ 3 

64.  Correct  according  to  the  rules  of  today's 
mathematical  conventions,  which  can  also  be  read  in 
Wikipedia  under  operator  order  (right-associative), 
would be 256.

For ^, however, you have to type the symbol yx  there.

Now,  of  course,  you  can  say  that  every  company  can 
calculate  as  it  pleases.  They  do  that,  too.  With  the 
Windows calculator (mode normal), 1 + 2 × 3 also results 
in a wrong solution in the sense of school mathematics. 
Saxony-Anhalt may not have enough money to sue the 
American tech giant Microsoft. But how can we prevent 
many students from losing their orientation because of 
this "diversity"?

As  the  picture  above  suggests,  the  calculator  makes  a 
very  good  impression.  However,  it  behaves  differently 
from what is taught in school in many other aspects and 
is also difficult to use, making it prone to errors even in 
simple tasks.

In mathematics, the "sine of 3.14" is usually written as 
follows:

sin(3,14)

In the mathematics textbook "Schlüssel zur Mathematik" (Sekundarstufe Sachsen-Anhalt Klasse 10 
Cornelsen, ISBN 978-3-06-0044558-7) it says more regrettably:

"The function f(x) = sin x is called a sine function."

The Texas Instruments calculator does not accept the comma as a decimal number separator and you 
must first press 3.14 and then the sin key. At least Texas Instruments is consistent in typing at this 
point. The square root of 4 is also found by first typing the 4 and then the square root sign. As 
everyone expects, the result is 2. But 2 without the decimal point would also be conceivable? With  
2+2, Texas Instruments also determines 4. and not 4, although everyone knows that the result of this  
addition is an integer. To prevent misunderstandings at this point: We do not criticize that this Texas  
Instruments calculator chooses the more user-friendly typing variant for unary operations, but that  
curriculum and school practice differ substantially here.

Designations on the keyboard are also surprising.

Σ+ (EE, RCL, STO, ... ).

59



Many  people  are  already  familiar  with  the  M+  symbol  -  add  to  memory  -  due  to  predecessor  
computers. Is innovation to be feigned here?

In this context, it is also interesting to note that 
pocket calculators already existed in the 1970s 
whose  range  of  functions  was  perfectly 
adequate  for  use  in  mathematics  lessons  and 
for a large number of applications, especially in 
the scientific and technical fields. 

These calculators were characterized by a clear 
keyboard layout that did without multiple key 
assignments.  The  calculator  architecture 
consistently  implemented  left-to-right 
arithmetic, and it was possible to dispense with 
bracket  levels.  The  range  of  functions  was 
limited  to  the  necessary  and  frequently  used 
functions.  These  minimized  problems  arising 
from different designs and ensured simple and 
intuitive operation.

One example is the scientific calculator shown 
in the figure, developed and produced in Japan 
in 1975.

From o++o point of view, however, the TI-30 ECO RS behaves correctly for the most part in these 
problems. For example, with 2 to the power of 3 to the power of 4, it chooses the way of calculating 
that  the  majority  of  people  prefer,  namely  to  calculate  from left  to  right.  This  is  also  true  for 
engineers,  as  I  experienced  many  times.  That  unary  functions  are  typed  after  the  number  (the 
argument), we also welcome, because this way of calculation also follows the principle from-left-to-
right:

3.14 sin cos

The calculator from Texas-Instruments first calculates the sine and applies then the cosine function 
to the result. This is not taught in math classes, but it is also easier to understand. Unfortunately, the 
calculator is not completely consistent at this point. At 1 + 2 × 3, it no longer calculates from-left-to-
right. Now, it calculates as Descartes supposedly wanted it to do. Only so that one could write a  
polynomial somewhat more elegantly, humans gave up the general principle from-left-to-right to 
calculate. Since one can regard today also a list of numbers as input value, this argumentation from 
the 17-th century has no more right to exist from our point of view. Instead of

X3 + 2 * X2 + 3 * X +4

we can today briefly and succinctly type: X poly 1 2 3 4 or    X poly [1 2 3 4]

In general, we also estimate that most of today's calculators are morally worn out. They should no 
longer be used at school at all. The first electronic, actually palm-sized calculator was developed as 
early as 1967 and had - as is still common today - a very small display. Since cell phones with much 
larger displays exist today in 2023 and we also know much more powerful apps with a much wider  

60



range of applications, calculators should generally be banned from school today or displayed in the  
school museum.

Let's  consider  a  very simple problem. You want to add 10 numbers with the Texas Instruments  
calculator. At the end of the calculation, when you realize that the result cannot be correct, you 
cannot look at the input again. You have to type in all the numbers again. It is unclear whether you  
do this correctly if all these numbers consist of 10 digits.

Let's continue by looking at the % key. If you play with the calculator and type for example

10 %

the result is 0.1.

So, you might suspect that the percent key is just mislabeled, and it just divides by 100. The percent  
key is also hard to type on this calculator, since you have to type 2nd beforehand. Also, once you find  
the little blue percent sign, which doesn't have its own key, you have to concentrate very hard to see  
if you should press the key above or below it. These are, of course, potential sources of error. Of 
course, you also have to know whether the 2nd key is only valid for the next operation or until I press  
it again.  If one then types for example

10 + 10 %

If you press = , you first get 1. Only when you press = again does the current user get the number 11 
that he probably wants.

But if you think mathematically, only one of the following two solutions comes into question:

10 + (10 %)

or

(10 + 10) %

You get 10.1 in the first case and 0.2 in the second.

That is, with this symbol mathematical thinking is contradicted. How should one understand 

10 + 10 % 

differently as a term? Why do all  students need to learn a term definition if  it  is  not applied in 
calculator practice at school?

To our knowledge, there is only one programming language that uses this symbol at all in connection  
with percentage calculation. Here, however, +% is used as a two-digit operation symbol. This also  
makes it mathematically clear and clean.

Just as the three letters of sin represent one operation symbol, +% is also one operation.

In o++o results in 10 +% 10 11. .

If you type in the Texas Instruments calculator  

10 sin x2  

so  you never  see  on the  display  which  operation symbol  you have just  typed or  typed before.  
Furthermore, the keyboard labels make it difficult to understand the "dot before dash" rule when the  
multiplication sign  consists  of  2  dashes  and the  division  sign  contains  a  dash.  We conclude the 

61



section with what appears to be a very simple multiple addition. We think that hardly anyone can 
correctly manage an addition of very many numbers with a calculator.

7.8  Is EXCEL morally worn out?

Program 7.8.1: An o++o program for which EXCEL needs more than six worksheets!
<TAB!
NAME,    LENGTH,(AGE,WEIGHT m)m
Klaus    1.68    18  61
                 30  65
                 61  80
Rolf     1.78    40  72
Kathi    1.70    18  55
                 40  70
Walleri  1.00     3  16
Victoria 1.61    13  51
Bert     1.72    18  66
                 30  70
!TAB>
sel NAME! AGE>20
gib BMI,(AGE,BMI,(NAME,BMI m) m)  BMI:=WEIGHT:LENGTH:LENGTH!++:
rnd 2

If  you  realize  this  o++o  program  in  EXCEL  you  need  more  than  6  worksheets.  Hardly  anyone 
overlooks these EXCEL sheets, which is why they are very difficult to change. More details can be 
found under  o++o versus EXCEL.  Spreadsheet programs have several  advantages and are widely 
used, but they also have a number of disadvantages, which we will list: 

1. Data and formulas are mixed. For this reason, and because an EXCEL worksheet can contain 
hundreds or even thousands of formulas, it is almost impossible to check the correctness of  
the programs or to adapt them to changes. 

2. EXCEL  does  not  know  schemas  for  structured  tables:  e.g.  SUBJECT,MARKl  l  describes  a 
structured schema - here a list of subjects is described, and for each subject there is also a list 
of marks. 

3. EXCEL can display structured tables visually, but it cannot sort them directly or process them 
reasonably. 

4. You cannot use EXCEL to query databases, XML or Wikipedia. For that you would still have to 
learn SQL, XQuery or better o++o. 

5. EXCEL formulas are relatively cryptic because, for example, they often contain individual cell 
designations. For example, the sum over a column is written in EXCEL in the form: 
=SUM(F12:F75) 

6. A single EXCEL formula can require more analysis than a complete o++o program. 
7. EXCEL  contains  only  a  few  mathematical  concepts  and  therefore  requires  an  excessive 

amount of detailed knowledge. 
8. EXCEL offers the comma as the decimal point to German and other users. However, this 

makes it difficult to exchange corresponding worksheets of international companies across 
country borders, since many countries prefer the decimal point.  

9. Since data and programs are usually separated in o++o, the data can be used by several 
programs without any problems. This is more difficult with EXCEL.

10. For aggregations (sums, averages, maxima, etc.) per value you have in general to presort or 
group in EXCEL but not in o++o.

11. In EXCEL, you have to write each number in a separate cell. This could quickly overwhelm a 
smartphone screen. 

62



12. o++o  is  based  on  an  abstract  tabment  concept  for  data.  A  tabment  can  already  be 
represented in many ways by default: web tab xml image column ... and also compact (hsq). 
With CSS, the output of o++o can be formatted almost arbitrarily. EXCEL, on the other hand,  
is based on a concrete print image. This makes it easier to create simple applications at first, 
but it is rather a disadvantage for the complexity of today's applications.

13. After studying the above criticisms of EXCEL, a VW engineer remarked: At VW, EXCEL can be  
used by any employee at will. As a rule, however, it is only simple tables that are to be made 
"nice".  Sometimes  a  few  simple  arithmetic  operations  are  necessary.  Comprehensive, 
complex applications do not take place in EXCEL. 

EXCEL does not know mass data operations and could be morally worn out for this reason alone.  
Therefore, I  plead for removing EXCEL programs also from school lessons and replacing them by 
more powerful and promising concepts and systems. 

7.9  o++o Proofs
Proofs  have  played  a  minor  role  in  school  and  even  outside  the  world  of  professional  
mathematicians. Yet everyone wants to have confidence in a calculation, a system, or a calculator.  
When confronted with a new type of calculator or system, everyone first tries to solve problems like  
2 times 3. Who suspects further problems, tests e.g. 1 plus 2 times 3. 
The highly respected German economist Professor Sinn says in his lecture Energiewende ins Nichts 
(see youtube) that calculations only really make sense if you can understand them. To do this, you 
have to understand all the sub-steps in detail. 
We  have  been  working  on  this  requirement  of  Prof.  Sinn  for  decades.  The  SQL  designers  had 
formulated this requirement somewhat differently at the beginning of their development: 
SQL should become an end-user language. 
It follows directly that the average consumer should be able to understand SQL programs. Today, 
however, almost all SQL programmers come from the computer science corner. 
The importance of statistics in schools is increasing. 
How to teach a student a new statistical function, such as the average ++: or the function mad of 
o++o. If you simply apply the function to several lists of numbers and look at the result, you usually 
cannot  understand  its  meaning.  However,  if  the  teacher  knows  that  the  students  have  already 
understood the functions ++ (sum) and ++1 (count), this is no longer so difficult.

Program 7.9.1: Preparation of an o++o proof for the ++: operation..
Xl:= 3 5 4 2 1
SUM:=Xl ++
CNT:=Xl ++1
MYAVG:=SUM:CNT
OTTOAVG:=Xl++:

Result (ment)

<TABM>
  <SUM>15</SUM>
  <COUNT>5</COUNT>
  <AVERAGE>3.</AVERAGE>
  <OTTOAVG>3.</OTTOAVG>
  <X>3</X>
  <X>5</X>
  <X>4</X>
  <X>2</X>
  <X>1</X>
</TABM>

63



Despite this (docu)ment output, it is clear that the two average values match. Here the ment output  
agrees almost completely with the xml output. The columns MYAVG and OTTOAVG must however 
agree with all other input lists. The program has the advantage of being very simple. But the student  
still has to enter a lot of data. Using the example of o++o-mad, which has not yet played a big role in 
Germany, we want to show that an extended o++o program can relieve us of much of the typing  
work. This mad function is one of the simplest and clearest statistical functions, but it has not so nice 
mathematical properties. Now, we assume knowledge of the operations ++:, ..x and abs. By 
from ..x to!cnt 
a list of cnt random numbers between from and to is generated. abs calculates the absolute 
value.

Program 7.9.2: o++o Proof for the ++: Operation.
RANDOMNRl:= 1 ..x 10!10
Xl:= 1 ..x RANDOMNR!RANDOMNR
AVG:=Xl ++:
DISTANCE:=AVG - X abs
MYMAD:=DISTANCEl ++:
OTTOMAD:=Xl mad
gib AVG,MYMAD,OTTOMAD l

Result (tab)
AVG,          MYMAD,         OTTOMAD

2.8           1.44           1.44
4.16666666667 1.5            1.5
1.33333333333 0.444444444444 0.444444444444
1.5           0.5            0.5
5.            2.8            2.8
1.            0.             0.
3.            1.6            1.6
1.            0.             0.
1.            0.             0.
1.            0.             0.

We can easily extend the result table to a thousand output rows table by replacing the last number 10 
of the first row with 1000. We have extracted only the relevant columns with the gib statement. 

7.10 An example of deep digitization
Perhaps the following example makes the concept of deep digitization a little clearer: If addition, 
multiplication, were not taught in school, today, for example, you would need different apps to solve 
the following two problems. 
An analogy to deep digitization from the field of "single data" operations 

1. I have received a load of 36.57 tons of bulk material and will receive 31 more loads of this  
type. How much bulk will I have in total? 

2. I have a rectangular plot of land 32 m wide and 36.57 m long. What is the size of my plot? 

Everyone who has understood multiplication knows that it is one and the same problem that can be 
solved very easily with a simple calculator. For today's digitization, this means that a deep digitization 
could require far fewer computer applications than a FD (flat digitization) and that the end users  
(managers, politicians, ...) could master far more traditional applications (apps). After all, if the apps 
and applications are based on one (e.g. o++o) data model, one can of course also standardize the 
interfaces of these apps and such an application could replace many conventional FD applications.

64



8 Schemes and Structured Tables
All  column names of  a table are often considered as a schema of the table.  Column names are  
necessary to understand corresponding column values correctly. If we consider structured tables, it is 
advantageous to enrich the column names with corresponding collection symbols; for example, l for  
list.

NAME,                 BORNIN,       (DEED,                                   YEAR l) l
Otto the Great        Old Saxony(De) Elected King of Germany                  936
                                     The Hungarians defeated on the Lechfeld  955
                                     First emperor of the Holy Roman Empire   962
Otto von Moravia      Moravia        married Euphemia of Hungary             1086
Otto von Guericke     MD(De)         Inventor of the air pump                1649
                                     Hemisphere test for the emperor         1654
Otto von Bismarck     Preussen(De)   with carrot and stick policy            1871
                                     Ems Dispatch                            1870
                                     First Chancellor of Germany             1871
Nicolaus Otto         Taunus (De)    Co-inventor of the gasoline engine      1876
OttoNormalVerbraucher De             learns car driving                      1960
                                     learns a programming language           2025

Tabment 8.1: ottos.tab

The above table (TABMENT=TABelle+dokuMENT) ottos.tab contains a list of 6 "persons" and for each  
person a repeating group (DEED, YEAR l) - a list of (DEED, YEAR)-pairs. Here, a person has 4 columns,  
but it is a triple (3-tuple). It is a structured tuple, struple for short (designation of Prof. Schek). The  
first two components are of type TEXT and the third component is a list of sub tuples (pairs) (2-
tuples). We will call the attribute values of a level segment. 

The first NAME segment is:

NAME,          BORNIN
Otto the Great Old Saxony(De)

The first DEED segment of Otto the Great reads:

DEED,                   YEAR
Elected King of Germany 936

The first person corresponds to the first struple; it is a NAME tuple:

NAME,            BORN,               (DEED,                                   YEAR l)
Otto the Great   Old Saxony(De)       Elected King of Germany                 936
                                      The Hungarians defeated on the Lechfeld 955
                                      First emperor of the Holy Roman Empire  962

Since the DEED tuples (= DEED sub-tuples) do not contain any other collections, a DEED segment is  
the same as a DEED tuple. If we were to represent the above table by an ordinary flat table, every  
(NAME, BORNIN)-pair would have to appear in every row. That is, (Otto the Great, Old Saxony(De)) 
would have to appear 3 times (once for each DEED segment). Then, for example, it is not so easy to  
count the persons in the table. With the above table, the corresponding program looks like this:

Program 8.1: How many ottos are contained in the table ? (How many elements (struples) does 
the outermost collection contain?)
ottos.tab
++1

Here and in the following, we use these abbreviations and keywords:

aus: from  

++1: count

65



gib: (corresponds to the SELECT of SQL)

sel : selection  

sel-: selection 

:= : assignment (extends the specified table by a new (complex) column)

m: set: contains different elements

b: Bag: an element may occur more than once

l: list: the order of the elements is important

The result of program 8.1 is a simple table:

ZAHL
6

The schema of this table does not contain a collection symbol because the table contains exactly one 
element. Similarly, we do not need a collection symbol in the following 2 queries. We do not want to  
explain the following queries in detail. We use the queries to illustrate what different types of tables  
there are and what schemas belong to them.

Program 8.2: How many persons and how many deeds are contained in the file ottos.tab?
ottos.tab
gib CNTPERSON,CNTDEED
    CNTPERSON:= NAME! ++1
    CNTDEED  := DEED! ++1

Result (tab)
CNTPERSON, CNTDEED

6          12

Program 8.3: Tell me the name of the person born in Saxony.
aus ottos.tab
sel Saxony in BORNIN
gib NAME

Result 
NAME

Otto the Great

Program 8.4: Give me the name of a noble person.
aus  ottos.tab
sel  von in NAME
gib  NAME

Result 
NAME

Otto von Moravia

If  keywords like "sel  "  and "in" are highlighted in color in the future o++o software, the second 
program line will also be easier to read. 

Here it would be better to output the names of all the nobles:

66



Program 8.5: Sort all noble names
aus  ottos.tab
sel  von in NAME
gib  NAMEm
Result (tab)
NAMEl

Otto von Bismarck
Otto von Guericke
Otto von Moravia

To save space on the screen or paper, we can also arrange the elements of a one-column-list or other 
collection horizontally:

Result (tabh)
NAMEl

"Otto von Bismarck" "Otto von Guericke" "Otto von Moravia"

Program 8.6: Count all deeds and all deeds of each century. Add to each century the 
corresponding people.
aus ottos.tab
CENTURY:=YEAR div 100 +1
gib CNTDEED,(CENTURY,CNTDEED,NAMEm m)
    CNTDEED:= DEED ! ++1
Result (Table with 3 segment types: CNTDEED, (CENTURY, CNTDEED2) and NAME)
CNTDEED,(CENTURY,CNTDEED2,NAMEm m)

12       10      3        Otto the Great     
         11      1        Otto von Moravia       
         17      2        Otto von Guericke       
         19      4        Nicolaus Otto    
                          Otto von Bismarck       
         20      1        John Doe  
         21      1        John Doe   

Program 8.7: Count all the acts and the acts of each century with corresponding persons, where 
for each act the corresponding person must appear (with duplicates).
aus ottos.tab
CENTURY:=YEAR div 100 +1
gib CNTDEED,(CENTURY,CNTDEED,NAMEb m)
    CNTDEED:= DEED ! ++1
Result (tab)
CNTDEED,(CENTURY,CNTDEED2, NAMEb m)

12       10      3         Otto the Great     
                           Otto the Great     
                           Otto the Great     
         11      1         Otto von Moravia       
         17      2         Otto von Guericke       
                           Otto von Guericke       
         19      4         Nicolaus Otto    
                           Otto von Bismarck       
                           Otto von Bismarck       
                           Otto von Bismarck       

67



         20      1         OttoNormalVerbraucher
         21      1         OttoNormalVerbraucher

Where b stands for bag (multiset). So far, we have considered only tables with nested levels. But a 
structured table may also contain "independent" collections:

NAME ,          RESIDENCEl, WIFEl,      RULESOVERl l
Otto the Great  Magdeburg   Editha      Saxony
                Memleben    Adelheid    Thuringia
                                        Bavaria
                                        Franconia
                                        Swabia
                                        Italy
                                        Bohemia
                                        Holland
                                        Lorraine
                                        Friesland
Charles IV      Prague       Margaret   Bohemia 
                Tangermünde  Anna       Silesia 
                             Anna       Brandenburg
                             Elizabeth  Italy
                                        Hungary

Tabment 8.2: emperors.tab

In this table "Memleben" and "Otto the Great" are in the same relation to each other as "Adelheid"  
and "Otto the Great". But this does not mean that "Adelheid" and "Memleben" are related to each 
other although they are in the same row. Therefore, the following restructuring is senseless.

Program 8.8: Query with empty result
aus emperors.tab
gib NAME,RESIDENCE,WIFE m

gib NAME,RESIDENCEm,WIFEm m is useful, however.

68



9 Tabment types (TTs) and structured documents
For structured tables and documents, we use the name Tabment. Therefore, we abbreviate the type 
of  a  tabment with TT (Tabment Type).  The TT completes the information given by a schema.  It  
specifies for each tag its schema. For example, the TT for the above table ottos.tab is:
TABMENT! OTTOS
OTTOS! NAME,BORNIN,(DEED,YEAR l)l
NAME BORNIN DEED! TEXT
YEAR! ZAHL

TEXT  and  ZAHL  (integer)  are  elementary  types  that  need  no  further  explanation.  Each  named 
tabment  is  surrounded by  a  tag  that  is  derived from the file  name by  omitting the type suffix. 
Therefore, our first table can also be presented in document style or in a document style with inner  
tables (ment or xml).
for example:
<OTTOS>
  <NAME>Otto the Great</NAME>
  <BORNIN>Altsaxony(De)</BORNIN>
  <DEED>Elected  King of Germany</DEED>.
  <YEAR>936</YEAR>
  <DEED>Hungarians beaten on the Lechfeld</DEED>.
  <YEAR>955</YEAR>
  <DEED>First emperor of the Holy Roman Empire</DEED>
  <YEAR>962</YEAR>
  <NAME>Otto von Moravia</NAME>
  <BORNIN>Moravia</BORNIN>
  <DEED>married Euphemia of Hungary</DEED>
  <YEAR>1086</YEAR>
  <NAME>Otto von Guericke</NAME>
  <BORNIN>MD (De)</BORNIN>
  <DEED>Inventor of the air pump</DEED>.
  <YEAR>1649</YEAR>
  <DEED>Half ball attempt in front of the emperor</DEED>.
  <YEAR>1654</YEAR>
  <NAME>Otto von Bismarck</NAME>
  <BORNIN>Preussen(De)</BORNIN>
  <AT>with carrot and stick policy</DEED>.
  <YEAR>1871</YEAR>
  <DEED>Ems Dispatch</DEED>.
  <YEAR>1870</YEAR>
  <AT>First Chancellor of the Reich of Germany</DEED>.
  <YEAR>1871</YEAR>
  <NAME>Nicolaus Otto</NAME>
  <BORNIN>Taunus (De)</BORNIN>
  <DEED>Miter inventor of the gasoline engine</DEED>.
  <YEAR>1876</YEAR>
  <NAME>Otto Normal Consumer</NAME>
  <BORNIN>De</BORNIN>
  <DEED>learns to drive</DEED>
  <YEAR>1960</YEAR>
  <DEED>learns a programming language</DEED>.
  <YEAR>2025</YEAR>
</OTTOS>

Tabment 9.1: Table ottos.tab in XML document style

69



"Otto the Great" Old Saxony(De) 
 "Elected King of Germany" 936 
 "The Hungarians defeated on the Lechfeld" 955 
 "First Emperor of the Holy Roman Empire" 962 
"Otto of Moravia" Moravia 
 "married Euphemia of Hungary" 1086 
"Otto von Guericke" "MD (De)" 
 "Inventor of the air pump" 1649 
 "Hemisphere trial before the emperor" 1654 
"Otto von Bismarck" Prussia(De) 
 "with carrot and stick policy" 1871 
 "Ems Dispatch" 1870 
 "First Imperial Chancellor of Germany" 1871 
"Nicolaus Otto" "Taunus (De)" 
 "Co-inventor of the gasoline engine" 1876 
"Otto Normal Consumer" De 
 "learns to drive" 1960 
 "learns a programming language" 2025

Tabment 9.2: Table ottos.tab in hsq style

We consider a document with TT. It uses alternatives through (|). It comes from the XQuery use 
cases (C+07).

<META!
TABMENT! REPORT1
REPORT1! SECTIONl
SECTION! TITLE,CONTENT
CONTENT! TEXT|NARCOSIS|PREPARATION|CUT|ACTION|OBSERVATION l
PREPARATION! TEXT|ACTION l
CUT! TEXT|GEOGRAPHY|INSTRUMENT l 
ACTION! TEXT|INSTRUMENT l 
TITLE NARCOSIS OBSERVATION GEOGRAPHY INSTRUMENT! TEXT
!META>
<REPORT1>
  <SECTION>
    <TITLE>Procedure</TITLE>
    <CONTENT>
  The patient was taken to the operating room, where she was placed in the supine position and
<NARCOSIS> induced under general anesthesia. </NARCOSIS>
<PREPARATION>
<ACTION>A Foley catheter was placed to decompress the bladder</ACTION> and the abdomen was then 
sterilely prepped and draped.
</PREPARATION>
<CUT>
A curved incision was made
<GEOGRAPHY> in the center line immediately infraumbilical </GEOGRAPHY>
 and the subcutaneous tissue was divided
 <INSTRUMENT> Use electrocautery. </INSTRUMENT>
 </CUT>
 The fascia was identified and
 <ACTION> # 2 0 Maxon seams were placed on each side of the centerline.
 </ACTION>
 <CUT>
 The fascia was shared with
<INSTRUMENT> electrocautery </INSTRUMENT>
 and the peritoneum entered.
</CUT>
 <OBSERVATION>The small intestine was identified.</OBSERVATION>
 and
 <ACTION> the <INSTRUMENT>Hasson trocar</INSTRUMENT>
 was placed under direct visualization.
 </ACTION>
 <ACTION>The <INSTRUMENT>Trocar</INSTRUMENT>using the 
      Sutures was attached to the fascia.
</ACTION>
</CONTENT>
</SECTION>    

70



</REPORT1>

Tabment 9.3: report1.ment

In  report1.xml  the  CONTENT  is  a  list  of  elements,  where  each  element  is  either  of  type  TEXT, 
ANESTESIA, PREPARATION, CUT, ACTION or OBSERVATION. In the above document, the first element  
is simple TEXT, the second is of type ANESTESIA, the third is of type PREPARATION, etc. Since our  
report was tagged in the above way, the following example queries are possible. 

For example:

Program 9.1: What instruments were used in the second cut?
aus report1.ment
gib CUTl
sel CUT pos = 2
gib INSTRUMENTl
Result (tab)

INSTRUMENTl

electrocautery

Program 9.2: What are the first two instruments used?
aus report1.ment
gib INSTRUMENTl
sel INSTRUMENT pos < 3
Result (tab)

INSTRUMENTl

Use electrocautery.  
electrocautery

71



10  A university database
We consider a non-relational database consisting of one flat and two structured tables:

FACS! FAC,DEAN,BUDGET,STUDCAPACITY m
STUDENTS! STID,NAME,LOC?,STIP,FAC,(COURSE,MARK m),(PROJ,HOURS m) m
COURSES! COURSE,TEACHER,(ISBN,TITLE m)m

The underlined column names are keys. The last two tables can be represented by the following 5  
flat relations:

student1:      STID,NAME,LOC?,STIP,FAC m
exam1:         STID,COURSE,MARK m
projects1:     STID,PROJ,HOURS m
course1:       COURSE,TEACHER m
course_books1: COURSE,ISBN,TITLE m

FAC,  DEAN,   BUDGET, STUDCAPACITY m
Art   Sitte    2'000  600
Infor Reichel 10'000  500
Math  Dassow   1'000  200
Philo Hegel    1'000   10
Sport Streich  8'000  150

Tabment 10.1: facs.tab

STID,NAME,   LOC?,     STIP,FAC, (COURSE,   MARK m),(PROJ, HOURS m)m
1111 Ernst   Oehna     500  Math  Algebra   1        Fritz   4
                                  Logic     2        Otto    2
                                  History   1
2222 Sophia  Berlin    400  Infor Algebra   3        Ghandi  5
                                  Databases 1        Ming    4
                                  Otto      1        Otto    6
3333 Clara   Oehna     450  Infor Databases 1
                                  OCaml     2
4444 Ulrike            400  Art                      Monet   10
5555 Käthe   Gerwisch  600  Art   Repin     1        Monet   20
                                  Apel      1 
6666 Claudia Berlin    600  Sport Psycho    2        Matthes  8
                                  Ski       1        Witt    12

Tabment 10.2: students.tab

COURSE,  TEACHER,(ISBN,         TITLE m)m
Algebra   Reichel 0138-3019     Structural Induction on Partial Alg.
                  3-8244-2099-6 Structured tables
Databases Saake   0-321-31256-2 Database Systems an Application
                  0-7167-8069-0 Principles of Database Systems
Otto      Benecke 0-7167-8069-0 Principles of Database Systems
                  3-8244-2099-6 Structured tables

Tabment 10.3: courses.tab

STID,NAME,   LOC?,    STIP,FAC m
1111 Ernst   Oehna    500  Math  
2222 Sophia  Berlin   400  Infor  
3333 Clara   Oehna    450  Infor  
4444 Ulrike           400  Art  
5555 Käthe   Gerwisch 600  Art  
6666 Claudia Berlin   600  Sport  

Tabment 10.4: students1.tab

72



STID,COURSE,   MARK m
1111 Algebra   1
1111 History   1
1111 Logic     2
2222 Algebra   3
2222 Databases 1
2222 Otto      1
3333 Databases 1
3333 OCaml     2
5555 Apel      1
5555 Repin     1
6666 Psycho    2
6666 Ski       1

Tabment 10.5: exams1.tab

STID,PROJ,   HOURS m
1111 Fritz    4
1111 Otto     2
2222 Ghandi   5
2222 Ming     4
2222 Otto     6
4444 Monet   10
5555 Monet   20
6666 Matthes  8
6666 Witt    12

Tabment 10.6: projects1.tab

The above tables and the following programs refer to tab files, although we keep in mind that the 
specified tables could be database tables.

10.1 Selection (sel  sel-)
A condition specifies tuples or sub tuples. In a sel clause the specified tuples form the result, in a sel- 
clause the specified tuples are omitted.

Consequently, the schema and the TT of the considered tabment are not changed by a selection.  
Column names or tags are written in upper case in an o++o program. They must start with a letter or  
the character "_". A WORT (word) that is not enclosed by "-symbols must therefore use a lowercase 
letter. TEXT may contain spaces; however, they must then be enclosed in "-symbols.

Program 10.1.1: Find all students from Berlin and Oehna with bad results..
aus students.tab
sel LOC in "Berlin Oehna" # selects students
sel MARK > 2              # selects exams and students
Result (tab)
STID,NAME , LOC?  ,STIP,FAC ,(COURSE ,MARK m),  (PROJ , HOURS m) m

2222 Sophia Berlin 400  Infor Algebra 3          Ghandi  5 
                                                 Ming    4 
                                                 Otto    6  
Intermediate result after the first condition
1111 Ernst  Oehna  500 Math      Algebra   1     Fritz  4 
                                 History   1     Otto   2 
                                 Logic     2 
2222 Sophia Berlin 400 Infor     Algebra   3     Ghandi 5 
                                 Databases 1     Ming   4 

73



                                 Otto      1     Otto    6 
3333 Clara   Oehna  450 Infor    Databases 1 
                                 OCaml     2 
6666 Claudia Berlin 600 Sport    Psycho    2     Matthes  8 
                                 Ski       1     Witt    12  

The second "condition" is applied to the result of the first condition. The second "condition" is an 
abbreviation for the following two conditions:

sel STID!   MARK>2 # Selection STID tuple (MARK>2 must exist)
sel COURSE! MARK>2 # Selection COURSE tuple

The first of these two conditions expresses that we select (complete) student tuples for which there  
exist   (COURSE,MARK)  sub  tuples  with  a  grade  of  3  or  higher.  We  do  not  write  the  existence  
quantifier because there are several  EXIST quantifier behind each condition. "#" is  the comment 
symbol for a line.  It  can be used to describe the meaning of a program step. Also,  lines can be  
commented out to indicate intermediate results. 

Program 10.1.2: For all students from Oehna and Berlin, indicate all results with 3 or worse.
aus students.tab
sel LOC in "Berlin Oehna" # equivalent: LOC in [Berlin Oehna]
                          # equivalent: LOC in Berlin Oehna 
sel COURSE! MARK>2        # selects exams and not students
gib NAME,LOC,(COURSE,MARK m) b
Result (tab)
NAME ,  LOC , (COURSE, MARK m) b

Clara   Oehna     
Claudia Berlin      
Ernst   Oehna     
Sophia  Berlin Algebra 3 

After applying the two conditions, the restructuring (see section 10.3) was applied. Therefore, the 
scheme of the result has changed and the data has been sorted.

Program 10.1.3: Find all students from Oehna and Berlin with a grade of 3 or worse, with all 
marks.
aus students.tab
sel LOC in "Berlin Oehna"
sel STID! MARK>2                # selects only students and not exams
gib NAME,LOC,(COURSE,MARK m)m
Result (tab)
NAME , LOC ,  (COURSE,   MARK m) m

Sophia Berlin  Algebra   3 
               Databases 1 
               Otto      1 

Program 10.1.4: Find all students who have only a grade of 1 and at least one grade of 1.
aus students.tab
sel MARKm = {1}    # { } are set brackets
Result (tab)

74



STID,NAME , LOC?    ,STIP,FAC ,(COURSE,MARK m),(PROJ ,HOURS m) m

5555 Käthe  Gerwisch 600  Art   Apel   1        Monet 20  
                                Repin  1 

For the evaluation of the condition, for each student the list of his marks is transformed into a set.  
Thus, Ernst's set {1 2 1} = {1 2} and Kathe's set {1 1} is equal to {1}. Two sets are equal if every 
element of the left side is also on the right side and every element of the right side is on the left side.  
In other words, two sets M1 and M2 are equal if 'M1 inmath M2 & M2 inmath M1' holds. If we want  
to  have all  students  with  exactly  two marks  1,  then we can use  multisets:  MARKb =  {{1  1}}  (b  
abbreviates Bag). If the order of the marks is also important, then we can take lists: MARKl = [1 2 1],  
etc. 

Program 10.1.5: Find all students with all exams, who got a 1 in the algebra course..
aus  students.tab
sel  STID! COURSE=Algebra & MARK=1
gib  STID,NAME,(COURSE,MARK m)m
Result (tab)
STID,NAME ,(COURSE, MARK m) m

1111 Ernst  Algebra 1 
            History 1 
            Logic   2 

Program 10.1.6: Find all students with all exams, who have taken an algebra course and have a 1 
(not necessarily in the same course)..
aus students.tab
sel STID! COURSE=Algebra
sel STID! MARK=1
gib STID,NAME,(COURSE,MARK m)m
Result (tab)
STID,NAME , (COURSE ,  MARK m) m

1111 Ernst   Algebra   1 
             History   1 
             Logic     2 
2222 Sophia  Algebra   3 
             Databases 1 
             Otto      1 

Program 10.1.7: Find all students who already have exams in Algebra and Databases..
aus students.tab
sel STID! COURSE=Algebra
sel STID! COURSE=Databases
#sel Algebra Databases in COURSEm is equivalent to both selections
Result (tab)
STID,NAME , LOC?  ,STIP,FAC ,  (COURSE ,  MARK m),(PROJ , HOURS m) m

2222 Sophia Berlin 400  Infor   Algebra   3        Ghandi 5 
                                Databases 1        Ming   4 
                                Otto      1        Otto   6 
Intermediate result after the first condition
1111 Ernst  Oehna  500  Math    Algebra   1        Fritz  4 
                                History   1        Otto   2 
                                Logic     2 

75



2222 Sophia Berlin 400  Infor   Algebra   3        Ghandi 5 
                                Databases 1        Ming   4 
                                Otto      1        Otto   6 

If we would connect both conditions by & (and), this condition "contains" only one EXIST quantifier, 
of the kind that no sub tuple exists that satisfies both sub conditions simultaneously.  The result  
would be empty in any case.

Program 10.1.8: For each student who has completed Algebra, indicate all other courses they have 
completed.
aus  students.tab
sel  STID!   COURSE=Algebra     # selects students
sel- COURSE! COURSE=Algebra     # chooses exams
gib  NAME,COURSEb m
Result (tabh)
NAME,   COURSEb m

Ernst   History Logic
Sophia  Databases Otto

Program 10.1.9: Find all occurrences of the word Otto.
aus students.tab
sel Otto   
Result (tab)
STID,NAME,   LOC?  ,STIP,FAC ,  (COURSE ,MARK m),(PROJ ,HOURS m) m

1234  Ernst  Oehna  500  Maths                    Otto  2
1245  Sophia Berlin 400  Infor   Otto    1        Otto  6

Program 10.1.10: Print from all tuples of the university database (to which I have access) the 
(sub)tuples containing the word Apel.
aus students.tab,courses.tab
sel Apel
Result (xml)
<TABM>
  <STUDENTS>
    <STID>5555</STID>
    <NAME>Käthe</NAME>
    <STIP>600</STIP>
    <FAC>Art</FAC>
    <COURSE>Apel</COURSE>
    <MARK>1</MARK>
  </STUDENTS>
  <COURSES/>
</TABM>

So  far  in  this  section  we  have  only  considered  "selection  by  content",  but  almost  the  same 
importance has "selection by position". This is not only useful for lists, but can also be used in the 
context of "relational applications". We only consider two examples here.

Program 10.1.11: Give for each student from Oehna with exams, the last exam.
aus students.tab
sel LOC=Oehna

76



sel MARK pos- = 1
gib STID,NAME,(COURSE,MARK m)m
Result (tab)
STID,NAME,(COURSE,MARK m) m

1111 Ernst Logic  2 
3333 Clara OCaml  2 

The pos (pos-) function returns the position number (position number backwards) of the (sub-) item  
in the corresponding set. Therefore, MARK pos is the same as COURSE pos.

Program 10.1.12: Give the 2 best exams for the 3 best students. We omit Ulrike because we 
cannot calculate an average for her. She has no marks yet.
aus  students.tab
sel- NAME=Ulrike
sel  MARK=MARK
gib  AVGM,NAME,FAC,(MARK,COURSE m)m
     AVGM:= MARK! ++:
sel  NAME pos < 4
sel  MARK pos < 3
rnd  2
Result (tab)
AVGM,NAME ,FAC ,  (MARK,COURSE m ) m

1.00 Käthe Art     1    Apel    
                   1    Repin     
1.33 Ernst Math    1    Algebra       
                   1    History    
1.50 Clara Infor   1    Databases   
                   2    OCaml     

Here, it is sufficient to know that by the gib-clause the students are sorted by AVGM, the exams are  
sorted by MARK and AVGM is the average for each student. The gib clause is explained in more detail  
in section 10.3.

Although the following query does not require sel  or sel-, first and last are still selections. last selects 
the last element from each collection. These operations can be used to quickly get a first impression  
of the structure and content of a tabment.

Program 10.1.13: Find the last element of each deepest collection of the students file.
exams1.tab,projects1.tab last
Result (tab)
STID ,COURSE ,MARK m, (STID ,PROJ ,HOURS  m)

6666  Ski     1        6666  Witt  12

Program 10.1.14: Find the students with the highest scholarships.
aus students.tab
STIPMAX:=STIPl max        # a new column with one value is created
sel STIP=STIPMAX
Result (tab)
STIPMAX ,(STID ,NAME   ,LOC?    ,STIP ,FAC ,(COURSE ,MARK  m),(PROJ   ,HOURS  m) m)

600       5555  Käthe   Gerwisch 600   Art   Apel    1         Monet   20
                                             Repin   1
          6666  Claudia Berlin   600   Sport Psycho  2         Matthes  8
                                             Ski     1         Witt    12

77



10.2 Calculations (:=)
Program 10.2.1: Calculate the gross values of several prices.
3.18 55.88 17.90 * 1.19
Result (hsqh and tabh)
PZAHLl  
3.7842 66.4972 21.301 

Program 10.2.2: Calculate the gross values of several prices and leave the entered values in the 
output.
NETl :=3.18 55.88 17.90
GROSS:=NET * 1.19
Result (tab)
NET,  GROSS l

 3.18  3.7842 
55.88 66.4972 
17.9  21.301  

Program 10.2.3: Calculate the gross values of several prices.
3.18 55.88 17.90 +% 19
Result (tabh)
PZAHLl

3.7842 66.4972 21.301

Program 10.2.4: Convert all net prices of a small table into gross prices..
<TAB!
ARTICLE,  PRICE l
OttoRAMDB 500
OttoWiki   10
OttoCalc   20
!TAB>
+% 19
Result 
ARTICLE , PRICE l

OttoRAMDB 595.  
OttoWiki   11.9 
OttoCalc   23.8

19% is added to each number in the table. Text values are not changed by arithmetic operations with  
numbers.

Program 10.2.5: Calculate the gross value of each item and the sum of all gross values.
<TAB!
ARTICLE,  PRICE,CNT m
OttoRAMDB 500     20
OttoWiki   10    200
OttoCalc   20   4000
!TAB>
TOTAL:=PRICE*CNT +% 19
TOTALSUM:=TOTALl ++

78



Result 
TOTALSUM,(ARTICLE ,PRICE,CNT, TOTAL m)

 109480.  OttoCalc   20  4000 95200. 
          OttoRAMDB 500    20 11900. 
          OttoWiki   10   200 2380.

Program 10.2.6: Report each computer science student's stipend in dollars.
aus  students.tab
sel  FAC=Infor    
DOL:=STIP*1.02
Result (tab)
STID,NAME , LOC?  ,STIP,FAC , DOL , (COURSE   , MARK m),(PROJ , HOURS m) m

2222 Sophia Berlin 400  Infor 408.   Algebra    3        Ghandi 5 
                                     Databases  1        Ming   4 
                                     Otto       1        Otto   6 
3333 Clara  Oehna  450  Infor 459.   Databases  1 
                                     OCaml      2 

Program 10.2.7: Pay each student 100 euros for each of their projects..
aus students.tab
BONUS:= PROJl ++1 *100
gib STID,NAME,BONUS m
Result (tab)
STID,NAME,   BONUS m

1111 Ernst   200 
2222 Sophia  300 
3333 Clara     0 
4444 Ulrike  100 
5555 Käthe   100 
6666 Claudia 200

Program 10.2.8: Pay each Oehna student an additional bonus based on their mark average.
aus students.tab
sel LOC=Oehna
AVG1:= MARKl ++:
BONUS3:=1000 : AVG1
gib STID,NAME,AVG1,BONUS3 m
rnd 2
Result (tab)
STID,NAME ,AVG1,BONUS3 m

1111 Ernst 1.33 750.00 
3333 Clara 1.50 666.67

With the help of rnd (round) every value of a table is rounded to 2 digits after point (dot). For texts 
the value remains unchanged again.

Program 10.2.9: The students of the math faculty get a bonus of 900 euros, the computer 
science of 800 euros and all others get 700 euros. 
aus students.tab
BONUS:= 900 if FAC=Math !
        800 if FAC=Infor!
        700

79



gib STID,NAME,FAC, BONUS m
Result (tab)
STID, NAME ,  FAC , BONUS m

1111  Ernst   Math  900
2222  Sophia  Infor 800
3333  Clara   Infor 800
4444  Ulrike  Art   700
5555  Käthe   Art   700
6666  Claudia Sport 700

Program 10.2.10: Calculate the BMI (body mass index) for each weight of each person
<TAB!
NAME, LENGTH, (AGE, WEIGHT l)l
Klaus 1.68     18   61
               30   65
               56   80
               61   75
Kathi 1.70     18   55
               40   70
!TAB>
BMI:= WEIGHT : LENGTH : LENGTH
rnd 2
Result (tab)
NAME ,LENGTH, (AGE, WEIGHT, BMI l) l 

Klaus 1.68     18   61      21.61
               30   65      23.03
               56   80      28.34
               61   75      26.57
Kathi 1.70     18   55      19.03
               40   70      24.22

10.3 Restructuring (gib)
The restructuring operation stroke allows to restructure any tabment into another arbitrary tabment  
only by specifying the scheme or the TT of the target tabment. Additionally, aggregations, elimination 
of duplicates, union, sorting and certain joins can be realized.

Program 10.3.1: Illustrate the collection symbols
aus students.tab
gib FACm,FACb,FACl,FACm-,FACb-,FACl-,FAC?
Result (tab)
FACm ,FACb ,FACl ,FACm- ,FACb- ,FACl- ,FAC?  

Art   Art   Math  Sport  Sport  Sport  Math
Infor Art   Infor Math   Math   Art
Math  Infor Infor Infor  Infor  Art
Sport Infor Art   Art    Infor  Infor
      Math  Art          Art    Infor
      Sport Sport        Art    Math

The STID-segments (type: (STID, NAME, LOCATION?, STIP, FAC)) are inserted one after another into 
each of the given FAC collections. COURSE and PROJ segments are ignored. 

80



Program 10.3.2: Sort students by FAC and NAME.
aus students.tab
gib FAC,NAMEb m
Result (tabh)
FAC,  NAMEb m

Art   Käthe
      Ulrike
Infor Clara
      Sophia
Math  Ernst
Sport Claudia

STID segments are inserted first into the FAC level and then deeper into the NAME level, segment by  
segment. COURSE and PROJ segments are not touched anymore.

Program 10.3.3: Sort students by FAC and NAME, resulting in a flat table.
aus students.tab
gib FAC,NAME m
Result (tab)
FAC , NAME m 

Art   Käthe
Art   Ulrike
Infor Clara
Infor Sophia
Math  Ernst
Sport Claudia

If we replace m with b, the result elements do not change.

Program 10.3.4: Sort the faculties downwards by BUDGET and secondly by
student capacity.
aus facs.tab
gib BUDGET,STUDCAPACITY,FAC m-
Result (tab)
BUDGET,STUDCAPACITY,FAC m- 

 10000 500          Infor  
  8000 150          Sport  
  2000 600          Art  
  1000 200          Math  
  1000 10           Philo  

Program 10.3.5: Sort the faculties by budget and additionally by student capacity. (two 
independent sortings of one table).
aus facs.tab
gib BUDGET,FAC m-,(STUDCAPACITY,FAC m-)
Result (tab)
BUDGET,FAC m-,(STUDCAPACITY,FAC m-)  

10000  Infor   600          Art  
 8000  Sport   500          Infor  
 2000  Art     200          Math  
 1000  Philo   150          Sport  
 1000  Math     10          Philo  

81



Program 10.3.6: Pack each student's exam data by department. (Re-group already grouped data).
aus students.tab
gib FAC,(COURSE,MARK b)m
Result (tab)
FAC ,(COURSE ,  MARK b) m
Art   Apel      1
      Repin     1
Infor Algebra   3
      Databases 1
      Databases 1
      OCaml     2
      Otto      1
Math  Algebra   1
      History   1
      Logic     2
Sport Psycho    2
      Ski       1

Here the STID segments are inserted into the FAC level. They cannot be inserted deeper because they 
contain neither COURSE nor MARK values. The corresponding exams bags are then initially always 
empty. Then each COURSE segment ((COURSE, MARK)-pair) is extended by its parent STID segment. 
These  extended  segments  can  be  inserted  step  by  step  into  the  corresponding  bags  (b).  The 
extended segment has the type: (STID, NAME, LOC?, STIP, FAC, COURSE, MARK). PROJ-segments are 
not needed.

Program 10.3.7: (Special selection with gib clause) Give all students, for which a LOC entry exists, 
with this entry. Give additionally the given collection for comparison purposes.
aus students.tab
gib NAME,LOC m,(NAME,LOC? m)
Result (tab)
NAME ,  LOC m,  (NAME ,  LOC? m)

Clara   Oehna    Clara   Oehna
Claudia Berlin   Claudia Berlin
Ernst   Oehna    Ernst   Oehna
Käthe   Gerwisch Käthe   Gerwisch
Sophia  Berlin   Sophia  Berlin
                 Ulrike

In the first set, the user requests complete pairs. Since no pair exists for Ulrike, she cannot appear in  
the first result.

Program 10.3.8: (Selection with gib clause only.) Specify all students with non-empty exam-
collections.
aus students.tab
gib STID,NAME,FAC,COURSE,MARK m
gib STID,NAME,FAC,(COURSE,MARK m)m
Result (tab)
STID, NAME ,  FAC ,(COURSE ,  MARK m) m

1111  Ernst   Math  Algebra   1
                    History   1
                    Logic     2
2222  Sophia  Infor Algebra   3
                    Databases 1
                    Otto      1

82



3333  Clara   Infor Databases 1
                    OCaml     2
5555  Käthe   Art   Apel      1
                    Repin     1
6666  Claudia Sport Psycho    2
                    Ski       1
Intermediate result after the first gib-clause:

1111  Ernst   Math  Algebra   1
1111  Ernst   Math  History   1
1111  Ernst   Math  Logic     2
2222  Sophia  Infor Algebra   3
2222  Sophia  Infor Databases 1
2222  Sophia  Infor Otto      1
3333  Clara   Infor Databases 1
3333  Clara   Infor OCaml     2
5555  Käthe   Art   Apel      1
5555  Käthe   Art   Repin     1
6666  Claudia Sport Psycho    2
6666  Claudia Sport Ski       1

To get the intermediate result,  STID segments are tried to be inserted first.  This  is  not possible  
because there is no exams-data on this level. Then again, each COURSE segment is extended by its  
first level parent data. This data is inserted exam by exam and student by student.

Program 10.3.9: For each name, output the "first" MARK entry or "null value" if no MARK entry is  
present. Print the other collections for comparison purposes.
aus students.tab
gib (NAME,MARK? m),(NAME,MARK m),(NAME,MARK b),(NAME,MARKb m)
Result (tabh)
NAME,   MARK? m, (NAME,   MARK m), (NAME,   MARK b), (NAME,   MARKb m)

Clara   1         Clara   1         Clara   1         Clara   1 2
Claudia 2         Clara   2         Clara   2         Claudia 1 2
Ernst   1         Claudia 1         Claudia 1         Ernst   1 1 2
Käthe   1         Claudia 2         Claudia 2         Käthe   1 1
Sophia  3         Ernst   1         Ernst   1         Sophia  1 1 3
Ulrike            Ernst   2         Ernst   1         Ulrike
                  Käthe   1         Ernst   2
                  Sophia  1         Käthe   1
                  Sophia  3         Käthe   1
                                    Sophia  1
                                    Sophia  1
                                    Sophia  3

STID segments can be inserted in the first and last collection, since only names are required.

Program 10.3.10: (Restructuring) Reverse the given structuring. I.e., swap COURSE and NAME.
aus students.tab
gib COURSE,(NAME,MARK b)m
Result (tab)
COURSE , (NAME ,  MARK b) m

Algebra   Ernst   1
          Sophia  3
Apel      Käthe   1
Databases Clara   1
          Sophia  1

83



History   Ernst   1
Logic     Ernst   2
OCaml     Clara   2
Otto      Sophia  1
Psycho    Claudia 2
Repin     Käthe   1
Ski       Claudia 1

Here, an attempt is first made to insert the STID segments. Since no COURSE attribute exists, they  
cannot be inserted. Therefore, the extended COURSE segments are inserted first at the COURSE level  
and then at the NAME level.

Program 10.3.11:  (Restructuring with additional tags) Reverse the given structuring by changing 
COURSE from inner to outer collection and NAME from outer to inner. Create additional tuple and 
sub-tuple tags.
aus students.tab
gib COURSES
    COURSES     = COURSETUPLEm
    COURSETUPLE = COURSE,EXAMSTUPLEb
    EXAMSTUPLE  = NAME,MARK
Result (ment)
<COURSES>
  <COURSETUPLE>
    <COURSE>Algebra</COURSE>
    <EXAMSTUPLE>
      <NAME>Ernst</NAME>
      <MARK>1</MARK>
    </EXAMSTUPLE>
    <EXAMSTUPLE>
      <NAME>Sophia</NAME>
      <MARK>3</MARK>
    </EXAMSTUPLE>
  </COURSETUPLE>
  <COURSETUPLE>
    <COURSE>Apel</COURSE>
    <EXAMSTUPLE>
      <NAME>Käthe</NAME>
      <MARK>1</MARK>
    </EXAMSTUPLE>
  </COURSETUPLE>
  <COURSETUPLE>
    <COURSE>Databases</COURSE>
    <EXAMSTUPLE>
      <NAME>Clara</NAME>
      <MARK>1</MARK>
    </EXAMSTUPLE>
    <EXAMSTUPLE>
      <NAME>Sophia</NAME>
      <MARK>1</MARK>
    </EXAMSTUPLE>
  </COURSETUPLE>
  <COURSETUPLE>
    <COURSE>History</COURSE>
    <EXAMSTUPLE>
      <NAME>Ernst</NAME>

84



      <MARK>1</MARK>
    </EXAMSTUPLE>
  </COURSETUPLE>
  <COURSETUPLE>
    <COURSE>Logic</COURSE>
    <EXAMSTUPLE>
      <NAME>Ernst</NAME>
      <MARK>2</MARK>
    </EXAMSTUPLE>
  </COURSETUPLE>
  <COURSETUPLE>
    <COURSE>OCaml</COURSE>
    <EXAMSTUPLE>
      <NAME>Clara</NAME>
      <MARK>2</MARK>
    </EXAMSTUPLE>
  </COURSETUPLE>
  <COURSETUPLE>
    <COURSE>Otto</COURSE>
    <EXAMSTUPLE>
      <NAME>Sophia</NAME>
      <MARK>1</MARK>
    </EXAMSTUPLE>
  </COURSETUPLE>
  <COURSETUPLE>
    <COURSE>Psycho</COURSE>
    <EXAMSTUPLE>
      <NAME>Claudia</NAME>
      <MARK>2</MARK>
    </EXAMSTUPLE>
  </COURSETUPLE>
  <COURSETUPLE>
    <COURSE>Repin</COURSE>
    <EXAMSTUPLE>
      <NAME>Käthe</NAME>
      <MARK>1</MARK>
    </EXAMSTUPLE>
  </COURSETUPLE>
  <COURSETUPLE>
    <COURSE>Ski</COURSE>
    <EXAMSTUPLE>
      <NAME>Claudia</NAME>
      <MARK>1</MARK>
    </EXAMSTUPLE>
  </COURSETUPLE>
</COURSES>

Now, we want to illustrate the set-theoretic operations union, intersection, and set-difference. Since 
the STID column in students.tab is already a union, we illustrate the union with the files exams1 and  
projects1.

Program 10.3.12: Construct the union of two files, where each value of each file should appear in 
the result.
aus exams1.tab,projects1.tab    # a pair of tables

85



gib STIDb
Result (tabh)
STIDb

1111 1111 1111 1111 1111 2222 2222 2222 2222 2222 2222 3333 3333 4444 
5555 5555 5555 6666 6666 6666 6666
If we replace b with m in the gib statement, duplicates are eliminated.
Result
STIDm
1111 2222 3333 4444 5555 6666
If we want to know from which file each STID comes from, we can add corresponding information
aus exams1.tab,projects1.tab       # a pair of tables
gib STID,COURSE?,PROJ? b
Result (tab)
STID,COURSE?,  PROJ? b
1111           Fritz
1111           Otto
1111 Algebra
1111 History
1111 Logic
2222           Ghandi
2222           Ming
2222           Otto
2222 Algebra
2222 Databases
2222 Otto
3333 Databases
3333 OCaml
4444            Monet
5555 Monet
5555 Apel
5555 Repin
6666           Matthes
6666           Witt
6666 Psycho
6666 Ski

Program 10.3.13: Construct the intersection of two files with different schemas.
aus exams1.tab,projects1.tab
gib STID,COURSE?,PROJ? m
gib STID,COURSE,PROJ m
# This restructuring can also be realized through selections
gib STIDm
Result (tabh)
STIDm
1111 2222 5555 6666
Intermediate result after the first gib statement
STID, COURSE?, PROJ? m
1111 Algebra   Fritz
2222 Algebra   Ghandi
3333 Databases
4444           Monet
5555 Apel      Monet
6666 Psycho    Matthes

86



Program 10.3.14: Set difference: Specify all STIDs of exams1.tab that are not contained in 
projects1.tab.
aus exams1.tab
rename STID ! STUDID
,projects1.tab # in turn results in a tuple (pair) of tables
sel- STUDID in STIDm
gib  STUDIDm
Result (tab)
STUDIDm

3333

Program 10.3.15: query 10.3.14, but with nested query 
aus  exams1.tab
sel- STID in begin projects1.tab;; gib STIDm end
gib  STIDm
Result (tab)
STUDIDm

3333

Program 10.3.16: (Grouping with Aggregation) Calculate the number of students and the number 
for each faculty. Sort the students by FAC and NAME.
aus students.tab
gib CNT,(FAC,CNT,(NAME,STID b)m)
    CNT:= STID! ++1
Result (tab)
CNT,  FAC , CNT,  (NAME ,  STID b) m

6     Art   2      Käthe   5555
                   Ulrike  4444
      Infor 2      Clara   3333
                   Sophia  2222
      Math  1      Ernst   1111
      Sport 1      Claudia 6666

Program 10.3.17: (Restructuring with Aggregation) Give the total of all scholarships and the total 
for each course. Sort the records by course.
aus students.tab
gib SU,(COURSE,SU m)
    SU:= STIP ! ++
Result (tab)
SU ,(COURSE ,  SU m)

2950 Algebra   900
     Apel      600
     Databases 850
     History   500
     Logic     500
     OCaml     450
     Otto      400
     Psycho    600
     Repin     600
     Ski       600

87



It is interesting to note here that the “sum” of the inner SU values is generally larger than the outer  
SU value. This is due to the fact that a particular course usually occurs in more than one student  
record.

Program 10.3.18: Search the name of the student with ID 2222.
aus  students.tab
sel  STID = 2222
gib  NAME
Result (tab)
NAME  

Sophia

Program 10.3.19: Divide the students of the all faculties except sport into independent tables.
aus students.tab
sel- Sport
gib FAC,(NAME,LOC? m)m
cut 1   # the second argument says that only one faculty is desired
        # for each sub table
Result (tab)     
FAC ,(NAME  ,LOC?  m) l,(FAC ,(NAME  ,LOC?  m) l),(FAC ,(NAME ,LOC? m) l)

Art   Käthe  Gerwisch    Infor Clara  Oehna        Math  Ernst Oehna      
      Ulrike                   Sophia Berlin

The concept of hierarchical path is important for all operations. Its definition is based on "narrow" 
schemes. All collection symbols except '?' are real collection symbols.
A  schema s is narrow if for any 2 real collections c and c' holds, either c is contained in c' or c' is  
contained in c. Fields f1 and f2 of a schema s are on a hierarchical path (HP for short) with respect to 
s if the schema formed by forgetting all fields except f1and f2 is narrow.
X,Ym,Zm m is not narrow, but X,Y?,Z? m is. PROJ and COURSE are in
NAME, (COURSE,MARK m),(PROJ,HOURS m)m, not on a hierarchical path; unlike PROJm and COURSE. 
This is visible in the graphical representation of the schema.

m
|

(NAME, m, m)
 |  |

          (COURSE,MARK)    (PROJ,HOURS)

Program 10.3.20: Put simply two fields that are not on one HP onto one HP
aus students.tab
gib COURSE,PROJ m # is empty
Result (tabh)
COURSE, PROJ m

Program 10.3.21: Sort and group the students, who have taken an Algebra COURSE by their 
corresponding marks and sort them by name and print all their projects.
aus students.tab
sel COURSE=Algebra
gib MARK,(NAME,(PROJ,HOURS m)b) m

88



Result (tab)     
MARK, (NAME, (PROJ,  HOURS m) b) m

1      Ernst  Fritz  4
              Otto   2
3      Sophia Ghandi 5
              Ming   4
              Otto   6

Although PROJ and MARK are not on one HP, the project collection is not empty. This is possible, 
because the operation  strip is  applied,  if  the target  scheme contains  fields,  which are  not  on a 
hierarchical path. Strip generates a table of type: 
STID ,NAME  ,LOC   ,STIP ,FAC  ,COURSE ,MARK ,(PROJ  ,HOURS  m) m
Here, MARK and COURSE are on a HP. 

10.4 Joining by nested queries
The horizontal merging or joining of the information of two tables is called a "join". In our approach,  
joining two flat tables is not necessarily a flat table. From point of view of power we do not need an 
additional join operation. Meaningful structures can be created with assignments (:=).

Program 10.4.1: “Add” exams1 data to students1 data.
aus students1.tab
:= exams1.tab at FAC
Initial part of the result (tab) 
STID, NAME ,  LOC?    ,STIP, FAC ,(STID, COURSE ,  MARK m) m

1111  Ernst   Oehna    500   Math  1111  Algebra   1
                                   1111  History   1
                                   1111  Logic     2
                                   2222  Algebra   3
                                   2222  Databases 1
                                   2222  Otto      1
                                   3333  Databases 1
                                   3333  OCaml     2
                                   5555  Apel      1
                                   5555  Repin     1
                                   6666  Psycho    2
                                   6666  Ski       1
2222  Sophia  Berlin   400   Infor 1111  Algebra   1
                                   1111  History   1
                                   1111  Logic     2
                                   2222  Algebra   3
                                   2222  Databases 1
                                   2222  Otto      1
                                   3333  Databases 1
                                   3333  OCaml     2
                                   5555  Apel      1
                                   5555  Repin     1
                                   6666  Psycho    2
                                   6666  Ski       1
3333  Clara   Oehna    450   Infor 1111  Algebra   1
                                   1111  History   1
                                   1111  Logic     2
                                   2222  Algebra   3
                                   ...
...

The result contains 6*12=72 sub tuples. To get the 12 desired sub tuples, we need to add a condition:

89



Program 10.4.2: Add all corresponding exams1 records to each students1 record ("Structured left 
outer join").
aus students1.tab
:=exams1.tab at FAC
sel  COURSE! STUDENTS1/STID=EXAMS1/STID
Result (tab)
STID, NAME ,  LOC?    ,STIP, FAC ,(STID, COURSE ,  MARK m) m

1111  Ernst   Oehna    500   Math  1111  Algebra   1
                                   1111  History   1
                                   1111  Logic     2
2222  Sophia  Berlin   400   Infor 2222  Algebra   3
                                   2222  Databases 1
                                   2222  Otto      1
3333  Clara   Oehna    450   Infor 3333  Databases 1
                                   3333  OCaml     2
4444  Ulrike           400   Art
5555  Käthe   Gerwisch 600   Art   5555  Apel      1
                                   5555  Repin     1
6666  Claudia Berlin   600   Sport 6666  Psycho    2
                                   6666  Ski       1

If we want to omit Ulrike, we just have to omit the level identifier 'COURSE:'. Each tabment with the  
name xyz.tab has the outermost tag XYZ. Therefore, the above extension results in the following TT:

TT (tabment type of the result)

TABMENT! STUDENTS1
STUDENTS1! STID,NAME,LOC?,STIP,FAC,EXAMS1 m
EXAMS1! STID,COURSE,MARK m
MARK STIP STID! ZAHL
COURSE FAC LOC NAME! TEXT

This  TT  allows  accurate  specification  of  column  names  despite  duplicate  name  occurrences. 
EXAMS1/COURSE is the same as COURSE, because COURSE appears only once on the right side of the  
TT.

In addition, STUDENTS1 is on the right side of EXAMS, so the tag path STUDENTS1/EXAMS/COURSE is  
also identical to COURSE. However, the "tag path" STID does not specify exactly, since it occurs twice. 
STUDENTS1/STID  is  the  student  identifier  of  the  students1  table  and 
EXAMS1/STID=STUDENTS1/EXAMS1/STID of the exam table.

In an access path X/Y/Z, Z must occur on the right side of Y and Y must occur on the right side of X in  
the TT. X is the paternal marker of Y and Y is the paternal marker of Z. There is no tag between X and 
Y and Y and Z (in the xml- or ment-representation). If we don't know all the intermediate tags, we can 
also use the X//Z notation. In this case, there can be any number of tags between X and Z. That is, 
this  tag  path  corresponds  to  a  complete  tag  path  X/X1/X2/.../Xn/Z  for  matching  tags  X1,...,Xn. 
Therefore  STUDENTS1//COURSE  describes  COURSE  in  the  same  way  as  the  full  tag  path 
STUDENTS1/EXAMS1/COURSE.

Program 10.4.3: Program with nested query
aus students1.tab
EXAMS:=begin aus exams1.tab;;sel  STID=STID~ end at FAC

90



Result (tab)
STID, NAME ,  LOC?    ,STIP, FAC ,(STID, COURSE ,  MARK m) m

1111  Ernst   Oehna    500   Math  1111  Algebra   1
                                   1111  History   1
                                   1111  Logic     2
2222  Sophia  Berlin   400   Infor 2222  Algebra   3
                                   2222  Databases 1
                                   2222  Otto      1
3333  Clara   Oehna    450   Infor 3333  Databases 1
                                   3333  OCaml     2
4444  Ulrike           400   Art
5555  Käthe   Gerwisch 600   Art   5555  Apel      1
                                   5555  Repin     1
6666  Claudia Berlin   600   Sport 6666  Psycho    2
                                   6666  Ski       1

Nested queries are contained in  begin and end. If we want to refer to a column name outside the 
inner query, we must add a "~". Therefore STID~ is the identifier of STID of students1.

Program 10.4.4: Attempts to generate the given student table from three given flat relations..
aus students1.tab
PR:=begin aus projects1.tab
          sel STID=STID~
          gib PROJ,HOURS m end at FAC
EX:=begin aus exams1.tab
          sel STID=STID~
          gib COURSE,MARK m end at FAC
Result (tab)
STID, NAME ,  LOC?    ,STIP, FAC ,(COURSE ,  MARK m ),(PROJ ,   HOURS m) m

1111  Ernst   Oehna    500   Math  Algebra   1         Fritz    4
                                   History   1         Otto     2
                                   Logic     2
2222  Sophia  Berlin   400   Infor Algebra   3         Ghandi   5
                                   Databases 1         Ming     4
                                   Otto      1         Otto     6
3333  Clara   Oehna    450   Infor Databases 1
                                   OCaml     2
4444  Ulrike           400   Art                       Monet   10
5555  Käthe   Gerwisch 600   Art   Apel      1         Monet   20
                                   Repin     1
6666  Claudia Berlin   600   Sport Psycho    2         Matthes  8
                                   Ski       1         Witt    12

The result corresponds to students.tab.

Program 10.4.5: Generate a table with three nested levels.
aus   facs.tab
proj- STUDCAPACITY 
ST:=begin aus students1.tab
    sel   FAC=FAC~
    proj- FAC end at BUDGET
EX:=begin aus exams1.tab
    sel   STID=STID~
    proj- STID end at STIP
Result (tab)

91



FAC  ,DEAN , BUDGET,  (STID, NAME , (LOC?    ,STIP,((COURSE ,  MARK m) m) m

Art   Sitte    2000    4444  Ulrike           400
                       5555  Käthe   Gerwisch 600    Apel      1
                                                     Repin     1
Infor Reichel 10000    2222  Sophia  Berlin   400    Algebra   3
                                                     Databases 1
                                                     Otto      1
                       3333  Clara   Oehna    450    Databases 1
                                                     OCaml     2
Math  Dassow   1000    1111  Ernst   Oehna    500    Algebra   1
                                                     History   1
                                                     Logic     2
Philo Hegel    1000
Sport Streich  8000    6666  Claudia Berlin   600    Psycho    2
                                                     Ski       1

If we want to delete only a few columns, we can use the  proj- (projection) clause instead of a  gib 
clause. We notice that we get a structure with nesting depth 3, although the deepest nesting level in 
the program is 2.

10.5 A user-friendly “join” (ext ext2)
Through Example 10.3.20, it has become clear that the problem of loading data onto an HP when it is  
not yet on an HP in the source structure can be solved in some situations with an additional  gib 
statement  without  using the Cartesian product.  This  problem is  even more important  when we 
consider a given relational database with flat structures. In a tuple of such files, nothing is on an HP 
except  the  fields  that  are  in  the  same  table.  Therefore,  an  ordinary  gib statement  is  not  very 
expressive. Relational systems solve this problem with joins. But the join is related to the Cartesian 
product.  Moreover,  join-conditions have to be used.  In  [Gol08]  experiments  with  students  were 
described. They showed that missing join conditions are the most common semantic SQL error. If we 
use both constructs of this section, the join conditions generally do not need to be written. In the  
first part of this section, we present some typical queries for ext (extension). It is easy to use ext, but 
its definition seems to be a bit more complicated than its application.

Program 10.5.1: Give the very good exams and the time-intensive projects for all students who do 
not live in Gerwisch, who completed a COURSE with a 1, and who have the time-intensive projects. 
Group the students by place of residence.
aus  students1.tab ext exams1.tab ext projects1.tab 
sel- LOC=Gerwisch
sel  MARK=1
sel  HOURS>2
gib  LOC,(NAME,(COURSE,MARK m),(PROJ,HOURS m)b)m
Result (tab)
LOC , (NAME , (COURSE ,  MARK l), (PROJ ,  HOURS m) b) m

Berlin Claudia Ski       1         Matthes  8
                                   Witt    12
       Sophia  Databases 1         Ghandi   5
               Otto      1         Ming     4
                                   Otto     6
Oehna  Ernst   Algebra   1         Fritz    4
               History   1

Program 10.5.2: Group and sort student names with bad grades by faculty and output the 
students' bad courses. Omit STUDCAPACITY.

92



aus facs.tab,students1.tab,exams1.tab ext2
sel MARK>2
proj- STUDCAPACITY
Result (tab)
FAC  ,DEAN   ,BUDGET ,(STID ,NAME  ,LOC?  ,STIP ,(COURSE ,MARK m) m) m

Infor Reichel 10000    2222  Sophia Berlin 400    Algebra 3

Program 10.5.3: Give out all students from Oehna with dean, courses and projects..
aus facs.tab ext students.tab
sel LOC=Oehna
gib STID,NAME,FAC,DEAN,COURSEm,PROJm m
Result (tab)
STID, NAME, FAC,  DEAN,   COURSEm,  PROJm  m

1111  Ernst Math  Dassow  Algebra   Fritz
                          History   Otto
                          Logic
3333  Clara Infor Reichel Databases
                          OCaml

Program 10.5.4: Add the teacher column to the courses of the students of the computer science 
faculty.
aus students.tab ext courses.tab
sel FAC=Infor
gib NAME,LOC?,(COURSE,TEACHER,MARK m),PROJm m
Result (tab)
NAME , LOC?, (COURSE ,  TEACHER,MARK m), PROJm m 

Clara  Oehna  Databases Saake   1 
Sophia Berlin Algebra   Reichel 3        Ghandi  
              Databases Saake   1        Ming    
              Otto      Benecke 1        Otto    

Program 10.5.5: Find all students from large faculties who have a good mark in algebra. 
FAC ,(LOC ,NAMEb m ) m . Structure students by FAC and LOC, and sort them by 
NAME.
aus facs.tab,students1.tab,exams1.tab ext2
sel STUDCAPACITY>300
sel MARK<4 & COURSE=Algebra
gib FAC,(LOC,NAMEb m)m
Result (tab)
FAC ,(LOC   ,NAMEl m) m

Infor Berlin Sophia    

93



11 Special Restructuring Operations 
11.1 The Bill of Material Problem (BOM) (onrs)
The onrs operation was introduced to provide o++o numbers for solving BOM problems. The given  
tabment must be of type
X1,...,Xn,(Y1, ... Yk m) m
where X1 and Y1 are the keys of the respective collections.  BOM-problems occur often in industry. 
Surely, not only very large data sets have to be handled. Below, it can be seen that the whole BOM is  
stored in one structured table. Both collections of the input-table are sets. That means we have direct  
access to each tuple and sub-tuple, if the part or part-number is given.  In the first step otto-numbers 
are generated. We shall see that these numbers are also important for structured texts like books or  
the Wikipedia. The operation nextonr is similar to next, but it ends already, if an ottonr of the same or 
smaller length follows. The rest is realized by gib. 

Program 11.1.1: Print the BOM of the car Wartburg.
<TAB!
PART,    PROPERTY,  (SUBPART,   COUNT m) m
Bushing  cylindrical
Engine   heavy       Piston     6
                     Screw      8
Piston   light       Bushing    1
                     PistonRing 2
Rim      smooth
Trabant  modern      Body       1
                     Engine     1
                     Wheel      4
Wartburg fast        Body       1
                     Climate    1
                     Engine     1
                     Wheel      4
Wheel    round       Rim        1
                     Screw      5
                     Tire       1
!TAB>
onrs Wartburg
COUNTOTTO:= COUNT nextonr 
            COUNTOTTO pred *COUNT at COUNT
gib SUBPART,TOTAL m TOTAL:= COUNTOTTO!++
Result (tab)

SUBPART,   TOTAL m
Body        1
Bushing     6
Climate     1
Engine      1
Piston      6
PistonRing 12
Rim         4
Screw      28
Tire        4
Wheel       4
Intermediate result of line “onrs Wartburg”  (tab)

PART    ,PROPERTY ,(OTTONR ,SUBPART   ,COUNT  m) l
Wartburg fast       1       Body       1
                    2       Climate    1

94



                    3       Engine     1
                    3.1     Piston     6
                    3.1.1   Bushing    1
                    3.1.2   PistonRing 2
                    3.2     Screw      8
                    4       Wheel      4
                    4.1     Rim        1
                    4.2     Screw      5
                    4.3     Tire       1
Intermediate result without last line (tab)

PART    ,PROPERTY ,(OTTONR ,SUBPART   ,COUNT ,COUNTOTTO  m) l
Wartburg fast       1       Body       1       1
                    2       Climate    1       1
                    3       Engine     1       1
                    3.1     Piston     6       6
                    3.1.1   Bushing    1       6
                    3.1.2   PistonRing 2      12
                    3.2     Screw      8       8
                    4       Wheel      4       4
                    4.1     Rim        1       4
                    4.2     Screw      5      20
                    4.3     Tire       1       4

It  can be seen that  all  direct  subparts  from the Wartburg are assigned an otto number,  which  
consists of only one number. The engine is one such part. The direct lower parts of the engine  
(screw  and  piston)  are  assigned  otto  numbers  with  two  digits.  Similarly,  the  direct  
lower  parts  of  the  piston  are  assigned  otto  numbers  with  3  digits.  Thus,  a  non-recursive  
set without redundancy is formed for the Golf. The table recursion could now be applied to this set  
to calculate the multiplicity of containing a subpart.
Beside the input tabment  onrs needs one or more parts (here only Wartburg) for which the ONR 
resolution is to be made. Accordingly, the program line
onrs [Wartburg Trabant]
is correct and reasonable.

11.2 Transposing Matrices and structured Tables
Transposing data is well known from matrices, but it seems to be useful also for structured tables.  
For example, if a computer screen or a sheet of paper is not wide enough or too small, then often 
appropriate transpositions can help. 

Program 11.2.1: Transpose a simple matrix with column names.
<TAB! 
X1,X2 l
1  2  
3  4  
5  6
!TAB>
transpose
=:Y1,..,Y3 l
Final result:

Y1 ,Y2 ,Y3  l

1   3   5
2   4   6
Intermediate result of the above subprogram without the last program line 

95



(OCaml-Term)

Coll_t(List,Tuple_s [Mixe_s;Mixe_s;Mixe_s],
 [Tuple_t [
      Tag0 ("X1",
         El_tab (Int_v (1))
      );
      Tag0 ("X1",
         El_tab (Int_v (3))
      );
      Tag0 ("X1",
         El_tab (Int_v (5))
      )
   ];
   Tuple_t [
      Tag0 ("X2",
         El_tab (Int_v (2))
      );
      Tag0 ("X2",
         El_tab (Int_v (4))
      );
      Tag0 ("X2",
         El_tab (Int_v (6))
      )
   ]
])

It is also possible to apply at first the operation untagall to the given table and then transpose. The 
result will be the same. 

Now, we consider a table of marks, where the list of marks appears already in a transposed way,  
because the list of marks is arranged horizontally, but from logical point are they vertically arranged. 
To save further space a transposition of the (SUBJECT,MARKl m) – collections could be useful.

NAME ,(SUBJECT ,MARKl m) m

Clara  Chinese  2 4 3 5 3
       Maths    1 2 1 3
       Physics  1 1
Ernst  Chinese  1 2 1 4
       Latin    1 2 6
       Maths    2 4 3
       Physics  3 1 1
Sophia Chinese  1 2 3 1 2
       Maths    1 2 4 2
       Physics  3 1 4

marks.tabh 

Program 11.2.2: Arrange each inner set horizontally. 
marks.tabh
tag SUBTABLE ! (SUBJECT,MARKl m)
SUBTABLE::= SUBTABLE transpose meta1
Result:

MARKS

 

96



The above result is a problem for o++o, because it is not an ordinary table. The second sub table has 
4 components and the others only three. Therefore, for example, the tab-representations do not 
work. By the additional line 

gib NAME,CHINESEl,MATHSl,PHYSICSl,LATINl m

the problem can be solved. In this case each student has an empty or non-empty LATIN-collection.  
meta1 will be clear in the following example. 

Program  11.2.3: Arrange  each  inner  set  horizontally  without  an 
additional tag. 
marks.tabh
:= NAME tup nth 2 transpose meta1 
gib NAME,CHINESEl,MATHSl,PHYSICSl,LATINl m
Final result:

NAME,  CHINESEl, MATHSl, PHYSICSl, LATINl m

Clara  2 4 3 5 3 1 2 1 3 1 1       
Ernst  1 2 1 4   2 4 3   3 1 1     1 2 6
Sophia 1 2 3 1 2 1 2 4 2 3 1 4     
Sub program
marks.tabh
:= NAME tup nth 2 transpose 
Intermediate result of the above subprogram (webh)

97



By meta1 the (primary) data of the first element are taken as metadata. The following gib statement 
omits the SUBJECT and MARK columns and introduces a column LATIN for Clara and Sophia. Without  
this additional column, the data cannot be represented, for example in tab or tabh-format. 

Program 11.2.4: Arrange the result of the previous query vertically.  
<TABH!
NAME,  CHINESEl, MATHSl, PHYSICSl, LATINl m
Clara  2 4 3 5 3 1 2 1 3 1 1       
Ernst  1 2 1 4   2 4 3   3 1 1     1 2 6
Sophia 1 2 3 1 2 1 2 4 2 3 1 4     
!TABH>
SUBJECT,MARKl l:=NAME tup nths (2 .. 5)
                 transpose metaprim 
gib NAME,(SUBJECT,MARKl m)m
SUBJECT::=SUBJECT subtext 1!1 + (SUBJECT
    subtext 2!(SUBJECT ++1- 1) lowercase)
Final result (nearly equal to marks.tabh) 

NAME ,(SUBJECT, MARKl  m) m

Clara  Chinese  2 4 3 5 3
       Latin    
       Maths    1 2 1 3
       Physics  1 1
Ernst  Chinese  1 2 1 4
       Latin    1 2 6
       Maths    2 4 3
       Physics  3 1 1
Sophia Chinese  1 2 3 1 2
       Latin    
       Maths    1 2 4 2
       Physics  3 1 4
Example for the operation metaprim
MARKl := 1 2 1 3
metaprim
result (tab)

WORT ,ZAHLl

MARK  1 2 1 3
metaprim is only defined for one column tables.

The  transpose operation can be used especially  to  convert  tuples  or  sub tuples  into lists.  This  
has  the  advantage  that  list  operations,  such  as  selection,  can  be  applied  to  these  lists,  too.  
The following file was obtained from an EXCEL table.

ID                    ,LAND      ,WIDTH  ,LENGTH ,HEIGHT ,JAN ,FEB  ,MRZ  ,APR  ,MAY  ,JUN  ,JUL  ,AUG  ,SEP  ,OCT  ,NOV ,DEC  l
BG0001a-Varna          Bulgaria   43.21   27.91     44    63.   68.   81.   87.   88.   81.   86.  100.   95.   88.  66.  59.
BG0002a-Shumen         Bulgaria   43.283  26.933   242    59.   68.   83.   88.   88.   81.   88.   98.   97.   90.  64.  57.
BG0003a-Ruse           Bulgaria   43.856  25.971    48    72.   79.   99.   97.   94.   87.   94.  105.  106.  103.  64.  57.
BG0004b-Veliko Tarnovo Bulgaria   43.086  25.656   137    61.   68.   85.   90.   86.   81.   87.   93.   96.   91.  65.  57.
BG0005b-Burgas         Bulgaria   42.51   27.47     31    64.   68.   84.   89.   86.   82.   88.   99.   94.   85.  65.  55.
BG0006a-Plovdiv        Bulgaria   42.15   24.75    171    88.   75.   87.   92.   84.   78.   83.   93.   98.   91.  67.  71.
BG0007a-Sofia          Bulgaria   42.697  23.323   560    52.   66.   79.   75.   75.   75.   82.   89.   89.   84.  53.  40.
BG0008a-Haskovo        Bulgaria   41.933  25.567   183    78.   76.   87.   95.   86.   80.   84.   95.   96.   93.  69.  65.
BG0009a-Blagoevgrad    Bulgaria   42.014  23.095   373    61.   71.   87.   86.   84.   80.   87.   98.  100.   86.  57.  48.
BY0001a-Minsk          Belarus    53.9    27.5     280    35.6  54.4  94.2  81.9  95.8  95.8  94.2  92.8  80.6  50.6 23.3 19.7
DE0001a-Norderney      Germany    53.71    7.15     11    32.7  57.8  75.9  96.5 101.2  85.7  91.5  93.7  79.2  64.  40.3 20.1
DE0002a-Husum          Germany    54.48    9.06      3    32.7  57.8  75.9  96.5 101.2  85.7  91.5  93.7  79.2  64.  40.3 20.1
DE0003a-Hamburg        Germany    53.64    9.99     11    29.8  51.1  63.2  82.8  91.5  75.6  84.1  87.   71.3  60.3 38.2 20.1
DE0004a-Hannover       Germany    52.47    9.68     59    29.8  51.1  63.2  82.8  91.5  75.6  84.1  87.   71.3  60.3 38.2 20.1
DE0005a-Kiel           Germany    54.34   10.09      4    29.8  51.1  63.2  82.8  91.5  75.6  84.1  87.   71.3  60.3 38.2 20.1
DE0006a-Arkona         Germany    54.68   13.44     42    21.6  45.7  72.9  95.  106.4  90.7  99.  100.4  85.7  64.7 37.4 20.8
DE0007a-Warnemünde     Germany    54.18   12.08      4    21.6  45.7  72.9  95.  106.4  90.7  99.  100.4  85.7  64.7 37.4 20.8
DE0008a-Potsdam        Germany    52.38   13.06     81    30.5  53.8  70.7  82.8  90.8  77.8  89.3  94.5  79.2  67.  38.2 22.3
DE0009a-Schwerin       Germany    53.64   11.39     59    30.5  53.8  70.7  82.8  90.8  77.8  89.3  94.5  79.2  67.  38.2 22.3
DE0010a-Teterow        Germany    53.76   12.56     38    30.5  53.8  70.7  82.8  90.8  77.8  89.3  94.5  79.2  67.  38.2 22.3
DE0011a-Braunschweig   Germany    52.29   10.45     88    34.2  55.1  69.2  83.5  93.   79.9  87.8  90.8  74.9  64.7 41.  22.3

98



DE0012a-Dresden        Germany    51.02   13.78    119    34.2  55.1  69.2  83.5  93.   79.9  87.8  90.8  74.9  64.7 41.  22.3
DE0013a-Wittenberg     Germany    51.89   12.65    105    34.2  55.1  69.2  83.5  93.   79.9  87.8  90.8  74.9  64.7 41.  22.3
DE0014a-Erfurt         Germany    50.98   10.96    316    37.2  53.8  71.4  79.2  85.6  76.3  84.1  85.6  71.3  63.2 36.  23.8
DE0015a-Harzgerode     Germany    51.65   11.14    404    37.2  53.8  71.4  79.2  85.6  76.3  84.1  85.6  71.3  63.2 36.  23.8

Part of a table climate_radiation.hsq in tab-format 

climate_radiation has the scheme:
ID,COUNTRY,WIDTH,LENGTH,HEIGHT?,JAN,FEB,MRZ,APR,MAY,JUN,JUL,AUG,
                                SEP,OCT,NOV,DEC l
It  contains  17  columns.  You  can  reduce  the  number  of  columns  to  7  in  the  following  way:

This flat table is transformed into a structured one, in which the radiations are arranged vertically 
and the months are output in an additional column:

Program 11.2.5: Transpose the radiations vertically.
climate_radiation.hsq
MON,RADIATION l:= JAN seg transpose metaprim 
gib ID,LAND,WIDTH,LENGTH,HEIGHT,(MON,RADIATION l) l
Result (tab)
ID                    ,LAND      ,WIDTH  ,LENGTH ,HEIGHT ,(MON ,RADIATION  l) l
BG0001a-Varna          Bulgaria   43.21   27.91     44     JAN   63.
                                                           FEB   68.
                                                           MRZ   81.
                                                           APR   87.
                                                           MAY   88.
                                                           JUN   81.
                                                           JUL   86.
                                                           AUG  100.
                                                           SEP   95.
                                                           OCT   88.
                                                           NOV   66.
                                                           DEC   59.
BG0002a-Shumen         Bulgaria   43.283  26.933   242     JAN   59.
                                                           FEB   68.
                                                           MRZ   83.
                                                           APR   88.
                                                           MAY   88.
                                                           JUN   81.
                                                           JUL   88.
                                                           AUG   98.
                                                           SEP   97.
                                                           OCT   90.
                                                           NOV   64.
                                                           DEC   57.
. . .

Now you can easily create statistics about RADIATION or easily select specific months, etc.

Now, we show a transposition within a more complex given tabment. Here the elementary tag whose 
values are to become column names must be specified as the second input value.

Program 11.2.6: Arrange the subjects horizontally. 
<TABH!
NAME,   LOC,    BORN,    CLASS?,(HOBBY,       HOURS l),(SUBJECT,MARKl l)l
Clara   Oehna   12.6.11  4       Riding       5         Math    1 2
                                 Chess        1         German  3 1 1
Claudia Dallgow 14.9.17          Chinese      5         

99



                                 Food         4
Sophia  Dallgow 7.9.13   2       Painting     5         Math    1 2 1 1
                                 Wheelturning 4         German  1 2 1
                                 Chinese      6        
!TABH>
tag X!(SUBJECT,MARKl l) 
X::=X transpose meta1
gib NAME,LOC,BORN,CLASS?,(HOBBY,HOURS l),MATHl,GERMANl m
Result (tabh)
NAME,   LOC?,   BORN?,  CLASS?, (HOBBY,       HOURS  l),MATHl,  GERMANl l
Clara   Oehna   12.6.11 4        Riding       5         1 2     3 1 1
                                 Chess        1                 
Claudia Dallgow 14.9.17          Chinese      5                 
                                 Food         4                 
Sophia  Dallgow 7.9.13  2        Painting     5         1 2 1 1 1 2 1
                                 Wheelturning 4                 
                                 Chinese      6                 

100



12 Some operations for text processing with o++o (+ -+ cut satzl)
The + symbol can also be used to concatenate and manipulate text. Here, too, a small difference is 
made between TEXT and WORT:

Program 12.1: There are small differences between WORT and TEXT concatenation
WORDRESULT:=otto + " o++o"
TEXTRESULT:=otto text + " o++o"
Result (tab)
WORDRESULT, TEXTRESULT
otto_o++o   otto o++o   

Since the first input value of WORDRESULT is a word, the result is also of type WORT.  The same  
applies to the second case, where the result is a text. Words cannot contain spaces. 

-+text is an operation with 3 input values. The TT of the first input value is retained or WORT is 
changed to TEXT, if a blank is inserted.  Each occurrence of the second input value is replaced by the 
third. 

Program 12.2: -+text example
<TAB!
X, Y l
1 Today is Monday.
2 Yesterday is Sunday.
!TAB>
-+text "is S" ! "was S"
Result (tab)
X,Y l 
1 Today is Monday.    
2 Yesterday was Sunday.

Program 12.3: text operations + - -+text
TEXTPLUS:="Today is a beautiful " + day 
TEXTMINUS:=Thunmmder_weather - "m"
TEXTMINUSPLUS:="Today is a beaoetiful day." -+text oe ! u

Result (tab)
TEXTPLUS,                TEXTMINUS,      TEXTMINUSPLUS
Today is a beautiful day Thunder_weather Today is a beautiful day.

Program 12.4: "Coding" a text.
"Today is Tuesday. Tomorrow is Wednesday."
cut 1
sel- TEXT inmath ["a" "e" "i" "o" "u"] 
TEXT::="t" if TEXT="m"!
       "m" if TEXT="t"!
       TEXT
++text
Result (tab)
TEXT 
mdy s msdy. mtrrw s Wdnsdy.

101



Program 12.5: Eliminate the dot from numbers in a list.
Xl:=3 *l 5 ^ (1.1 ..6) 
Y:= X cut 1
sel- WORT= "."
Y::=Y ++text
Result (tab)
X,             Y l
  3.3483695221 33483695221
 10.0451085663 100451085663
 30.1353256989 301353256989
 90.4059770967 904059770967
271.21793129   27121793129

A function for sentences (satzl) has been implemented, which so far uses a relatively rudimentary 
end-of-sentence detection.

Program 12.6: Disassemble a text into a list of sentences.
"Today is a beautiful day. Tomorrow, I will go to buy something." 
satzl
Result (tab)
SATZl
Today is a beautiful day.
Tomorrow, I will go to buy something.

102



13 Format with o++o ('3 '4 norm3e norm3m mant rnd)
Analogous to SQL, o++o had initially limited itself to content problems. However, o++o uses much  
richer structures than SQL. Formatting was then taken over from SVG. Thus, one could frame a table,  
write letters bold or colored, etc. . Now we have implemented more possibilities. Numbers with a  
larger mantissa are hard to read if they are not grouped. Since many different variants are used for  
number representations in the world, we have chosen representations that do not collide with the  
existing ones as much as possible and are still better readable. 

Grouping of digit sequences ('3 '4)

Following the Swiss model, o++o uses the apostrophe to make numbers better readable. Blocks of  
three are the most important along with blocks of four. 

Program 13.1: Improve readability of several numbers by grouping them.
12345678, 1234567.87654 '3 ;1234567890 '4
Result (tab)

12'345'678 1'234'567.876'54 12'3456'7890

Such  representations  are  created  by  the  unary  operations  '3  and  '4.  The  user  can  also  set  the  
apostrophe arbitrarily, for example to make telephone numbers more readable: 

0176'84'208'408

Internationally, both the comma and the point (dot) are used as decimal separators and the point 
and the comma are also used for grouping. We hope to eliminate this inconsistency through these 
arrangements.

Exponent first notation (norm10m) and norm10e

PZAHL numbers with long mantissa are not to be grasped fast enough, since the more substantial  
exponent is indicated only at the end of the string. Furthermore, people think in thousands, millions,  
billions, ... . An exponent 7 or 8 must be recognized as first 10- or 100-million. This way of thinking 
reflects o++o by allowing only multiples of 3 as exponent. Furthermore, the exponents can also be  
given first:

6m12.345 (12 million ...)

9m123.4 (123 billion ...)

the old mantissa first notation knows o++o nevertheless. However here also multiples of 3 are used 
as exponent:

12.3456789e6 (12 million ...)

123.456789e9 (123 billion ...)

These formatting's can be generated by the unary operations norm3m (for the representation with 
m) and norm3e (for the latter). The 3 expresses that the exponent is a multiple of 3.

Program 13.2: Improve the readability of numbers by normalizing the exponents.
X:=12345678.9 norm3m
Y:=12345678.9 norm3e

103



Result (tab)

X,          Y 

6m12.3456789  12.3456789e6

The reduction of the digits (mant) 

Most people don't care about the many decimal places when a calculator outputs the square root of  
2 or 3 with more than 10 digits. The overload of irrelevant information makes it harder for us to see  
what is important. Therefore, omitting unnecessary digits (information) is important. 

The  binary  function  mant  realizes  this  and  converts  the  result  immediately  into  the  m-
representation. I.e. the operation norm3m is applied at the same time. The second argument of mant 
specifies the number of digits desired. 

Program 13.3: Reduce the number of digits to four.
12345678.98765 , 1234567890
mant 4
Result (web)

6m12.34   9m1.234

104



14 Structured diagrams
With o++o you can easily create diagrams. Once you have created an o++o program, you can use the 
diagram button to open a new browser window that offers a choice of  different diagram types. 
Column charts are certainly the most commonly used. The following rules apply to diagrams:

1. TEXTs are converted to words by the system by replacing each space with an underscore.
2. Numeric columns (ZAHL, PZAHL, RATIO) are displayed as columns.  
3. The first word column of each hierarchy level is used as the signature for the columns. The  

other  word columns of  the  level  are  ignored.  If  no  word column exists,  a  dash acts  as  a  
signature.

4. If no RGB values are given, the system sets default colors. If the user wants to choose the  
colors, each numeric column must have an RGB column in the same level or higher. If an RGB  
value is placed directly in front of a number column, it determines the color of the column.

5. If the table to be displayed starts, with the column name TITEL, the content of the column is  
interpreted as the heading of the entire chart.

We already know that a simple list of numbers is an o++o program that can be represented as a 
diagram. If there is one more word in each row, it serves as a signature:

Program 14.1: Create a column chart with signatures
<TAB!
NAME,   AVERAGE l
Ernst   1.7
Clara   1.3
Sophia  1.33
Ulrike  2.3
Claudia 2.1
Käthe   2.4
!TAB>
Result (struc.diagram- bar)

105



Program 14.2: Sort the columns with signatures by size
<TAB!
NAME,   AVG l
Ernst   1.7
Clara   1.3
Sophia  1.33
Ulrike  2.3
Claudia 2.1
Käthe   2.4
!TAB>
gib AVG,NAME m
Result (diagram - columns)

106



The following diagrams use the below table of towers.

TOWER,                       CITY,             COUNTRY,     HEIGHT l

Burj Khalifa                 Dubai             VAR          830 
Shanghai Tower               Shanghai          China        632 
Abraj Al Bait                Mecca             Saudi Arabia 601 
Ping An Finance Center       Shenzen           China        599 
Goldin Finance               Tainjin           China        597 
Lotte World Tower            Seoul             South Korea  555 
1 WTC                        New York          USA          541 
Guangzhou CTF Finance Center Guangzhou         China        530 
China Sun Tower              Beijing           China        528 
Taipei 101                   Taipei            Taiwan       508 
World Finance Center         Shanghai          China        492 
Lakhta Center                Saint Petersburg  Russia       462 
Vincom Landmark 81           Ho Chi Minh City  Vietnam      461 
Petronas Towers              Kuala Lumpur      Malaysia     452 
Berlin TV Tower              Berlin            GDR          368

towers.tab 

Program 14.3: Represent each tower by a column
towers.tab
TOWER::=TOWER subtext 1!12 # By this shortening of the name are also 
                           # in the bar chart all names at the same time

107



                           # visible; for space reasons, otherwise 
                           # sometimes some are hidden
Result (diagram columns)

Program 14.4: Represent each tower by a bar and output the bars country by country. Countries 
with the highest towers are to be output first (sort downwards). For each country, sort the towers 
upwards. The countries are to be visually marked off.
aus towers.tab
gib MAX,COUNTRY,(HEIGHT,CITY m) m- MAX:=HEIGHT!max
COUNTRY::=COUNTRY wort + "-----------------------------------" subtext 1!
30
RGBDARKGREEN:=darkgreen leftat MAX
RGBGREEN:=green leftat HEIGHT
upper part of the result (struc.diagram bar)

108



109



NAME,    LENGTH, (AGE,WEIGHTl l) l

Bert     1.72     18  66 65
                  30  70 71
Kathi    1.7      18  55 52
                  40  70 71
Klaus    1.68     18  61 60 62
                  30  65 63 67
                  61  80 82 79
Rolf     1.78     40  72 70 74
Victoria 1.61     13  51 50
Walleri  1.       3   16 15

weights.tabh

Program 14.5: Calculate BMI averages for all adults, for each age group, and overall. To realize the 
first 5 lines EXCEL needs more than 6 worksheets. 
aus weights.tabh
sel NAME! AGE>20
gib BMI,(AGE,BMI,(NAME,BMI m) m)
    BMI:=WEIGHT:LENGTH:LENGTH ! ++: 
rnd 2
=: BMI,AGE,BMI2,NAME,BMI3
AGE::=AGE wort
RGBRED      :=red leftat BMI
RGBDARKGREEN:=darkgreen leftat BMI2
RGBGREEN    :=green leftat BMI3
TITEL:="BMI averages total (red), per AGE (dark green), " 
       + "per person and age (green)" leftat RGBRED
Result (struc.diagram bars)

110



Program 14.6: Compare the weights, lengths and BMI of all persons. Sort the persons by BMI. 
aus weights.tabh
TITEL:="BMI in cyan, weight in kg (light blue) and length in dm (orange)"
gib TITEL,(BMI,NAME,WEIGHTAVG,LENGTH m)
    WEIGHTAVG:=WEIGHT ! ++:
    BMI:=WEIGHT:LENGTH:LENGTH ! ++: 
LENGTH::=LENGTH*10
AGE::=AGE wort
RGBLIGHTBLUE:=lightblue leftat WEIGHTAVG
RGBORANGE   :=orange    leftat LENGTH
RGBCYAN     :=cyan      leftat BMI
Result (struct.diagram bars)

111



Program 14.7: Represent 2 functions by bar graphs.
Xl:=0 ...10!0.05
SINE:=X sin
ROOT:=X sqrt
X::=X wort
RGB:=violet leftat SINE
RGB:=beige  leftat ROOT
Result (struc.diagram bars)

112



YEAR, (PARTY,SEATS l) l

1998   PDS    36
       SPD   298
       Grüne  47
       Union 245
       FDP    43
2009   Linke  76
       SPD   146
       Grüne  68
       Union 239
       FDP    93
2017   Linke  69
       SPD   153
       Grüne  67
       Union 246
       FDP    80
       AfD    92
       Sonst   2
2021   Linke  39
       SPD   206
       Grüne 118
       FDP    92
       Union 197
       AfD    82
       Sonst   2

elections.tab

113



Program 14.8: Visualize 4 election results and calculate the average number of votes of the 4 
elections.
elections.tab
YEAR::=YEAR wort
PARTY::=Linke if PARTY="PDS" ! PARTY        # the PDS was renamed
gib  TOTAL,PARTY m-,(YEAR,(SEATS,PARTY m-)m) 
     TOTAL:=SEATS! ++:
gib  TOTAL,PARTY l,(YEAR,(SEATS,PARTY l)l)
RGB:=red     if PARTY="SPD" !
     yellow  if PARTY="FDP" !
     darkred if PARTY=Linke !
     blue    if PARTY=AfD   !
     black   if PARTY=Union !
     green   if PARTY=Grüne !
     grey    leftat TOTAL SEATS
Result (struc.diagram bars)

Result without RGB values (tab)
TOTAL ,PARTY l, (YEAR ,(SEATS ,PARTY l) l)
231.75 Union     1998   298    SPD
200.75 SPD              245    Union
 87.   AfD               47    Grüne
 77.   FDP               43    FDP
 75.   Grüne             36    Linke
 55.   Linke     2009   239    Union
  2.   Sonst            146    SPD
                         93    FDP
                         76    Linke
                         68    Grüne
                 2017   246    Union

114



                        153    SPD
                         92    AfD
                         80    FDP
                         69    Linke
                         67    Grüne
                          2    Sonst
                 2021   206    SPD
                        197    Union
                        118    Grüne
                         92    FDP
                         82    AfD
                         39    Linke
                          2    Sonst

states7.tab

STATE,              SHORT, AREA,    INHABITANTS, DEBTS l

Baden-Württemberg   BW     35751.46 11069         43.1
Bremen              HB       318.     586         23.8
Nordrhein-Westfalen NRW    34110.26 17932        174.5
Saarland            SL      2569.69  1012         13.4
Sachsen             SN     18449.99  4077          6.0
Sachsen-Anhalt      ST     20451.58  2208          3.5
Thüringen           TH     16172.5   2134          7.5

Program 14.9: Sort and visualize the states by population per area and by population. (Visualize 2 
independent tables.) 
states7.tab 
INHABITANTSPERKM2:=INHABITANTS * 1'000 : AREA 
gib INHABITANTSPERKM2,STATE m- , (INHABITANTS,STATE m-)
'3
rnd 0
Result (struc.diagram bar )

115



Result (tab)
INHABITANTSPERAREA ,STATE m-,          (INHABITANTS ,STATE           m-)
1'843.              Bremen              17'932       Nordrhein-Westfalen
  526.              Nordrhein-Westfalen 11'069       Baden-Württemberg
  394.              Saarland             4'077       Sachsen
  310.              Baden-Württemberg    2'208       Sachsen-Anhalt
  221.              Sachsen              2'134       Thüringen
  132.              Thüringen            1'012       Saarland
  108.              Sachsen-Anhalt         586       Bremen

Program 14.10: Sort and visualize the states by population per area and by population, such that 
each states gets the same color in each of the diagrams. Divide the tables by additional space.
states7.tab
DEBTSPERHEAD:=DEBTS : INHABITANTS *1'000'000 
MIDDLE:=Middle
gib DEBTSPERHEAD,SHORT m- ,MIDDLE,(INHABITANTS,SHORT m-)
gib DEBTSPERHEAD,SHORT l ,MIDDLE,(INHABITANTS,SHORT l)
RGB:= red    if SHORT="NRW" !
      blue   if SHORT="BW"  !
      yellow if SHORT="SN"  !
      green  if SHORT="SL"  !
      violet if SHORT="TH"  !
      tomato if SHORT="HB"  !
      cyan   leftat DEBTSPERHEAD INHABITANTS
Result (struc.diagram bars)

116



117



15 Multiple diagrams
In  the  previous  chapter  we  saw  that  a  structured  table  can  usually  also  be  represented  as  a  
structured chart.  Program 14.7 demonstrates that this also works for larger tables. However, pie 
charts quickly become confusing if a circle represents too many numbers. 

Structured tables usually contain several sub-tables. These naturally contain fewer elements than the 
source table, so in this chapter each sub-table will be represented by an own diagram. With multiple  
diagrams, structured tables are visualized even more directly than with structured diagrams. 

Program 15.1: Sort and visualize the states by population per square kilometer and by population. 
(Visualize 2 independent tables.) (Program 14.9)
states7.tab 
INHABITANTSPERKM2:=INHABITANTS * 1'000 : AREA 
gib INHABITANTSPERKM2,STATE m- , (INHABITANTS,STATE m-)
'3
rnd 0
Result (2 pie charts)

Result (2 bar charts)

In  program  14.9  the  columns  for  inhabitants  per  square  kilometer  are  much  smaller  than  the 
columns for inhabitants. This problem disappears above with multiple charts. 

Program 15.2: as 14.10
elections.tab
YEAR::=YEAR wort
PARTY::=Linke if PARTY="PDS" ! PARTY
gib TOTAL,PARTY m-,(YEAR,(SEATS,PARTY m-)m) TOTAL:=SEATS ! ++
Result (5 bar charts)

118



Result (5 pie charts)

119



Note the difference between the above program and program 14.8. In 14.8 the sum of the four years 
is  calculated and here the average is  calculated.  Therefore,  the order of  the parties in the total  
balance differs. The order does not change even if an "average" is calculated by division by 4. Here  
you can see how important it is that the end-user must be able to read the program in order to 
correctly understand the information received. 

120



16 Image generation

Since  o++o  allows  to  generate  numbers  in  a  simple  way,  one  can  also  generate  whole 
images. For example, Xl:= 0 .. 4 generates the numbers 0 1 2 3 4. You can assign diagrams to 
these numbers, but to generate an image with o++o you need a list or a set of number pairs  
(X,Y).  The point gets a color if  there is  an RGB (RED,GREEN,BLUE)-triple before the X or 
before the Y value: 
(X, RGB, Y)
For RGB values o++o has 3 display options. 
English color names: 
red, silver, cyan, ...
Triples of integers between 0 and 255:
(255,0,0) (=red), (192,192,192) (=silver), (0,255,255) (=cyan)
Number triples between 0 and 1:
(1.,0.,0.) (=rot),(0.752941,0.752941;0.752941)(=silver),(0.,1.,1.) (=cyan)
We start with 2 functions, but initially define them only for 10 X values. You have to look 
closely to see the points: 

Program 16.1: Create 10 points twice.
Xl:=0 ..9
Y :=X sin
Y0:=X*0
Result (image - new window)

By introducing a step size of 0.1, the number of points is increased tenfold.
Program 16.2: Create 100 points twice.
Xl:= 0 ...9!0.1
Y:=X sin
Y0:=X*0
Result (image - new window)

121



Now we add another 0 to the step size.
Program 16.3: Create 1000 points twice.
Xl:=0 ...9!0.01
Y :=X sin
Y0:=X*0
Result (image - new window)

The sine function now becomes red and the X-axis green. The fact that a column name 
occurs twice (RGB) does not cause any problems at this point. 

Program 16.4: Display 2 functions in color.
Xl:= 0 ...9!0.01
Y :=X sin
Y0:=X*0
RGB:=red   leftat Y
RGB:=green leftat Y0
Result (image - new window)

The fact that it is also possible to create "full images" is first shown by the German flag. You 
can see that all points that follow a color value are output in this color. Thus, each of the 
color values has to occur only once for generation of the below the German flag. The term 
pixel has lost its meaning here or must be redefined, because we allow structured tables.  

Program 16.5: Generate the German flag
Xl:= 0 ...9!0.01
Yl:= 0 ...2!0.01 at X
=: $RECTANGLE
aus RGB:=gold
,$RECTANGLE
RGB:=red
,$RECTANGLE+(0,2)
RGB:=black
,$RECTANGLE+(0,4)
Result (image + new window)

122



Program 16.6: Design a bikini. Color the functions mirrored between sine and sine mirrored. 
Xl:=pi * -1 ...pi!0.005
Yl:=X sin abs *-1 ...(X sin abs)! 0.005
RGB:= 0.1+(X+Y sin abs),0.2,0.4 leftat Y
Result (image + new window)

123



Appendix A: List of operations and keywords of o++o
Most of the known operations have an arity. The square root, for example, requires only one input  
value or argument - this is usually a number. Therefore, sqrt is unary and has the arity 1. In the o++o 
data model, the argument of sqrt can also be a list of numbers. Then the square root is taken from 
each of the numbers. The list is then considered to be one input value, even though it may contain 
ten or even ten thousand numbers. That is, sqrt remains unary even in this case.

In the o++o syntax the sqrt symbol must follow the argument (postfix). This means that no additional 
parentheses are required.  It is not allowed to write sqrt([2 4 7]) in o++o. But instead, you can use 
[2 4 7] sqrt
or shorter also
2 4 7 sqrt
.
In both cases you get the same result. You can even apply sqrt to any tabment.
Another example is the addition. The + operator is even better known than the root operation. It has  
arity 2, which means it requires two input values. The addition is binary. The application of the wrong 
number of arguments leads to a syntactical error and a corresponding error message. 
3 + 
as well as
3 4 + 
lead to error messages.
In the term 
3 + 4
3 is the first argument and 4 is the second input value. Again, a list or other tabment can be used as  
the first argument. The operation and the second argument are then applied to all elements of the 
list/table.
1 3 7 + 4
results in
5 7 11
Here and in many other operations the type of the result corresponds to the type of the first input  
table. So, the above result is also a list of numbers. Binary operations are always written between the  
two input tables in o++o. You can also say that they have to appear after the first input table like the  
unary operations. The same applies to ternary operations in o++o. "!" is used as a separator between 
the second and third input value.

Hadmersleben subtext 4!5
for example, has the result:
mersl
The first input value is "Hadmersleben". The second input value (4) specifies the position of the initial  
letter of the partial word and the third input value (5) specifies the desired length.
5 if X>3 ! 6
also requires 3 input values (here: the 5, a truth value, and the 6). If we replace X by 10, the condition 
is fulfilled and the improved "if-then-else" operation returns 5. For X=1, however, the value 6 results. 

In the following, the input and output data are illustrated once again using typical examples.

(first) input tabment unary operation output tabment
pi sin results in 0.

124



1 4 9 sqrt results in 1. 2. 3.
1 4 9 ++: results in 4.66666666666

123456789 '3 results in 123'456'789
    

First input table binary operation second input table output tabment
7 + 8 results in 15
7. + 8 results in 15.

1 5 3 + 4 results in 5 9 7
1 5 3 + 1.2 results in 2.2 6.2 4.2
1 5 3 + 3 7 8 results in 4 12 11
1 5 3 + 3 7 not defined
7 9 divrest 3 results in 2,1 3,0

First input 
tabment

ternary 
operation

second input 
tabment

third input 
tabment

output 
tabment

"Georg 
Cantor"

subtext 1 ! 5 results in George

5 if 3=4 (no) ! 6 results in 6
1 ... 2.9 ! 0.5 results in 1. 1.5 2. 2.5
1 ..x 2 ! 4 Results for 

example  in
1 2 1 2

1. ..x 2 ! 4 Results for 
example  in

1.59782294585
1.86688159101
1.78666803454
1.62531501586

At this point it should be noted that in many cases the result of the previous line counts as the first 
input value of an operation:
marks.tab
++:
gives the average of all numbers that occur in the first line marks.tab.  marks.tab is the input of ++: 
The program
xx.tab
+ 2
adds 2 to each number in table  xx.tab. xx.tab is  the first input table and 2 is  the second. In an 
analogous way extracts
names.tab
subtext 3!4
from each text value (TEXT or WORT or ONR) of names.tab a text of length 4 starting at the third  
position. Here the ternary subtext operation has the input tabs names.tab, 3 and 4.
In an assignment or condition several operations can be applied one after the other. If all operations 
are unary (one input value), then each corresponding one-line term has the form 
tbt op11 op12 op13 ... op1n

or more concretely:
1 2 3 sin abs sqrt ++text
If all operations are binary (two input values), the form is
tbt1 op21 tbt2 op22 tbt3 op22 tbt4 ... op2n tbtn+1 

or more concrete

125



1 2 3 + 4 * 5 - 9
Terms with only ternary operations are certainly rare. Here is just a constructed example:
Magdeburg subtext 2!6 subtext 2!2
results in gd
If brackets are set, they must be calculated first:
abcdefghijk subtext 2!(2+3 ) results in bcdef
abcdefghijk subtext 2!2+3 on the other hand results in bc 
(bc + 3 equals bc)
If you are not quite sure, you can put brackets as a precaution.
+ 3
is not a term, because the operation + has no first input value here. Therefore, an error message 
would appear. However, this would not be true if the above code were not on the first line. The 
result of the preceding line is then the first input value of + 3 is then the second input value.  
In the following, the designations below are used:
num = ZAHL or PZAHL or RATIO or BAR (|) or BARl (stroke list)
nonum = TEXT or WORT or ONR 
mixe = nonum and num occur in one column
tbt stands for any tabment type
For the types, we often specify only those that are also changed by the operation. 

126



127

Operation 
symbol

Notation: 
Input Result 

type

Examples Meaning

+ tbt + tbt 
tbt

1 1 3 + 2.1 
results in 
3.1 3.1 5.1
xy ab + de 
results in 
xyde abde

addition of numbers or 
connecting text

* tbt * num 
tbt

2 3 5 * 2 
results in
4 6 10

multiplication

- tbt - num 
tbt

3 - 2 
results in
1 
11234 - 345 
results in 
10889

subtraction

: tbt : num 
tbt

3:4 
results in 
0.75

division

_ _ -> tbt Yl:= x y z
X? := 1 if Y=y ! _
results in
Y ,X?  l
x
y  1
z

place holder 

++ tbt ++ num 2 3 6 ++ 
results in 
11

sum

** tbt ** num 1 3 5 ** 
results in 
15

product

-- tbt -- num 20 5 4 -- 
results in 
11 

multiple subtraction

:: tbt :: num 64 2 2 :: 
results in 
16

multiple division

++: tbt ++: 
PZAHL

1 2 3 2 ++: 
results in
2.0

average

++1 tbt ++1ZAHL 3 4 7 9 ++1 
results in 
4

count



128

Operation 
symbol

Notation: 
Input Result 

type

Examples Meaning

++text tbt ++text 
text

[ab cde fg] ++text 
results in 
abcdefg

connect to text

++textsep TEXTl +
+textsep 
"sep" TEXT

ab cde fg 
++textsep ";" 
results in 
"ab;cde;fg"

combine to text with 
inclusion of a 
separator

, tbt1,tbt2 
tbt

1 2,3 
results in (.tab)
ZAHLl,ZAHL
1     3
2 

pairing

; tbt1;tbt2 
tbt

2,3 *2 
results in  
4,6
2;3 *2 
results in
2,6

also a pair formation. 
but ; separates 
sharper than ,

= tbt1,tbt2 
BOOL

1 = 2 
results in 
no

equality

<= tbt1 <= tbt2 
BOOL

2 <= 2 
results in
si

less than or equal to

>= tbt1 >= tbt2 
 BOOL

2 >= 4 
results in 
no

greater than or equal 
to

+coll coll1 +coll 
coll2 coll1

{{1 2}} +coll {1}
results in
{{1 1 2 }}

"set-theoretic" union 

-coll coll1 -coll 
coll2 coll1

[2 4 3 2] -coll [2]
results in
4 3 2

set difference

*coll coll1 *coll 
coll2 coll1

{1 2 3} *coll 
{4 5}
results in
ZAHL,ZAHL m
1    4 
1    5 
2    4 
2    5 
3    4 
3    5 

Cartesian product

:coll coll1 :coll 
coll2 coll1

{1 2 3} :coll [2 3 4] 
results in

intersection



129

Operation 
symbol

Notation: 
Input Result 

type

Examples Meaning

{2 3} 

*l tbt *l ZAHL  
tbt l 

car *l 3 
results in
car car car
or
xx.tab *l 3

multiply an tabment by 
an integer to a list 
of elements

*mat coll1 *mat 
coll2 coll

(1,2) *mat [2 3] 
results in 
8

matrix multiplication

-1mat coll -1mat 
coll

<TAB!
X1,X2,X3 l
1  0  2
0  2  0
0  0  8
!TAB>
-1mat
results in
X1, X2, X3 l
 1. -0. -0.25
-0. 0.5 -0.
 0. -0. 0.125

inverse matrix

& BOOL & BOOL 
-> BOOL

si & no
results in
no

conjunction (logical 
and)

&& tbt && BOOL si,66,si && 
results in
si

for all

|l ZAHL |l -> 
BARl

5 |l
results in
| | | | |

transfer numbers into 
tally sheets (for 
kindergarten)

.. number1 .. 
num2 -> numl

1 .. 4 
results in 
1 2 3 4

from .. to 
generate numbers with 
step 1

... number1 ... 
num2 ! num3 
numl

0 ... 0.6!0.2 
results in 
0. 0.2 0.4 0.6

from ... to ! step

..x num1 ... num2 
! ZAHL -> 
numl

1 ..x 6!3
results in 
5 3 2
(for example)

random numbers 
from ..x to ! cnt

'3 tbt '3 tbt 1234567890
'3
results in 
1'234'567'890

format in blocks of 3

'4 tbt '4 tbt 12345.67898 format in blocks of 4



130

Operation 
symbol

Notation: 
Input Result 

type

Examples Meaning

'4
results in 
1'2345.6789'8

^ hoch tbt ^ num 
tbt

4 ^ 1/2 
results in 
2.
10 *l 4 ^ (0 ..3) 
results in
1 10 100 1000

to the power of

abs tbt abs tbt -3 7 abs 
results in (tabh)
3 7

absolute amount

arctan tbt arctan -> 
tbt

1 arctan 
results in  
0.785398163397 (= pi:4)

arcus tangent 

at GROSS:=NET +% 19 at NET place a new column to 
the right of the 
specified column

aus tbt1
aus tbt2
 tbt2

aus rivers.tabh (new) start of a 
program

comp tbt name tbt <TAB!
NAME,FIRSTNAME,LOCATION
Mill Paul      Halle
TAB>
comp LOCATION
results in
LOCATION   
Halle 
(see also nth)

component

cos num cos 
PZAHL

pi cos 
results in 
-1.

cosine

cross tbt cross 
aggs -> tbt

[10 3] *mat (100,20,4)
cross ++
results in (.tab)
ZAHL ,ZAHL ,ZAHL ,SUM? l
1000  200   40    1240
 300   60   12     372
1300  260   52    1612

generation of pivot 
tables

cut tbt cut ZAHL 
-> tbt 

123,Today
cut 2
results in (.tab)
WORTl, WORTl
12     To

cut elementary values 
to given length



131

Operation 
symbol

Notation: 
Input Result 

type

Examples Meaning

3      da
       y

det coll det 
coll

<TAB!
X1,X2,X3 l
1  0  2
0  2  0
0  0  8
!TAB>
det
results in 
16.

determinant

div ZAHL div 
ZAHL ZAHL

11 div 5 
results in 
2

integer division 

divrest ZAHL divrest 
ZAHL pair

11 divrest 5 
results in 
2,1 
(not 2.1)

integer division with 
remainder

e e e ^ 3 ln
results in
3.

Euler's constant

first tbt first -> 
tbt

1 3;4;7 8 9 
first  
results in (tab)
ZAHLl,ZAHL,ZAHLl
1     4    7

from each collection 
resp. elementary 
component preserve 
only the first element

gib tbt1 
gib schema 
 tbt2

aus students.tab
gib FAC,(LOC,NAMEm)m

restructuring of a 
tabment, where a dtd, 
aggregations, and 
atomic schemes are 
allowed

giball tbt1
giball 
scheme2
 tbt2

giball X | Y l
List of all X and Y 
subtab segments (any 
depth); 
corresponds to ...//X|Y 
of XPath

extraction of all 
corresponding values;
especially useful for 
recursive tabments

gibtop tbt1
gibtop 
scheme2
 tbt2

gibtop Xl
corresponds to:
t/X: list of all X-
subtabments 
of t, from the highest 
level of t.

extraction of the top 
values, only

if term1 if cond 
! term2
 tbt1

1 if 4=4 ! 2 
results in
1

if with 3 input values



132

Operation 
symbol

Notation: 
Input Result 

type

Examples Meaning

1 if 4=3 ! 2
results in
2

in tbt1 in tbt2 
BOOL

"1 2 1" in "1 2" 
results in 
si
"1 2 3" in "1 1 2" 
results 
no

every word of the left 
side is word of the 
right side

inmath tbt1 inmath 
tbt2 BOOL

[1 3] inmath [1 4 3] 
results in
si
2 inmath {6 7 2} 
results in 
si

mathematical inclusion

keys tbt1 
keys tbt2 
tbt1

Xl:= 1 ..40
Y:=X*X
gib X,Y m
keys [7 34]
results in (.tab)
X, Y m
 7 49
34 1156

efficient selection in 
sets or lists

keyslike tbt1 
keyslike 
tbt2 tbt1

<TAB!
NAME,   LOC m
Clara   Oehna
Claudia Dallgow
Sophia  Dallgow
!TAB>
keyslike ["*ia"]
results 
NAME,   LOC m
Claudia Dallgow
Sophia  Dallgow

efficient selection in 
sets or lists with 
partial matching

last tbt last ->
tbt

1 2 4, 5 last 
results in (.tab)
ZAHLl, ZAHL
4      5

from each collection 
resp. elementary 
component preserve 
only the last element

leftat GR:=NET +% 19 leftat NET place new column to 
the left of the 
specified column

like term like 
"term?*"
  BOOL

Hadmersleben like "?
admers*" 
results in
si
'?': represents one 
letter

similar to



133

Operation 
symbol

Notation: 
Input Result 

type

Examples Meaning

'*': represents 0 or 
more letters

linreg tbt linreg 
num,num

<TAB!
PRICE,SOLD l
20     0
16     3
15     7
16     4
13     6
10    10
!TAB>
linreg
results in
19.73214,-0.98214

linear regression

lists tbt lists 
ZAHL  tbt l

Xl:= 1 2 
lists 2
results in (.tabh)
Xl l
1 1
1 2
2 1
2 2

generate a list of 
lists of specified 
length

ln tbt ln PZAHL e ln 
results in 
1.

natural logarithm

log tbt1 log 
tbt2 PZAHL

100 log 10 
results in 
2.

general logarithm

lowercase tbt lowercase 
 tbt

asdRRGee34 lowercase 
results in 
asdrrgee34

turn into lowercase 
letters

max tbt max num 12.21,2,Hello 
max
results in
12.21

maximum of all numbers

median tbt median 
num

1 2 4.9 median
results in
3.0

median

min tbt min num 12.21,2,Hello 
min
results in
2 

minimum of all numbers

minus tbt minus -> 
tbt

1 -2 4 minus
results in (.tabh)
-1 2 -4

negate any number



134

Operation 
symbol

Notation: 
Input Result 

type

Examples Meaning

natsel tbt natsel -> 
tbt

students.tab,exams.tab 
sel NAME=Ernst
natsel
after application of the 
condition “exams” also 
contains only exams from 
Ernst. The input-type 
remains unchanged.

natural selection 
(regarding common 
column names)

next Xl:=1 2  3
Y:=100. next Y pred 
             +% 10 at X
results in

X, Y l
1  100.
2  110.
3  121.

recursive assignment

nextonr Xm:={1 1.1 1.1.2 2}  
Y:=1 nextonr Y pred + 10
   at X
results in
X,    Y m
1      1
1.1   11
1.1.2 21
2      1

next for onr-recursion

no no BOOL no or si 
results in
si

truth value false 
corresponds to the 
answer no (Spanish no)

not BOOL not 
BOOL

si not 
results in
no

negation

nth tbt nth ZAHL 
 tbt'

1 3 5 nth 2 
results in 
3

nth component 

nthpred Name nthpred 
ZAHL term

Xl:= 1 2 3 4
Y:= X nthpred 2
results in
X,Y? l
1 
2 
3 1
4 2

n-th predecessor

nthsucc tbt nthsucc 
ZAHL tbt'

Xl:=2 4 7 4 3 4 4
sel X nthsucc 2=4
results in (tabh)
4 4 3

n-th successor



135

Operation 
symbol

Notation: 
Input Result 

type

Examples Meaning

nthzahl tbt nthzahl 
ZAHL tbt'

"2023.03.26" nthzahl 3
results in
26

nth number in a text

onr tbt onr tbt 1 3 5.2 "4.5.5" onr
results in (.tabh):
1 3 5.2 4.5.5

Conversion to o++o 
number

onrs tbt onrs name 
! element 
tbt' 

<TAB!
PART, SUBPARTm m
car   motor
      body 
motor reel
      screw
!TAB>
onrs car 
results in 
PART,(OTTONR,SUBPART m)l
car   1      body
      2      motor
      2.1    reel
      2.2    screw

generates o++o numbers 
in a table; this is an 
important component of 
BOM explosion. 

or BOOL or BOOL 
-> BOOL

1=1 or 1=2
results in 
si

disjunction (logical 
or)

or2 coll1 or2  
BOOL

1=2,no or2 
results in
no

it exists

permutations list 
permutations
-> listl

2 4 9 
permutations
results in (.tabh)
ZAHLl  l
2 4 9
2 9 4
4 2 9
4 9 2
9 2 4
9 4 2

"permutations" is an 
abbreviation for the 
program:
Xl:= 2 4 9
lists 3
sel Xm= {2 4 9}

pi pi PZAHL CIRCULAR_AREA:=R*R*pi circle number

poly num poly 
list num

3 poly [1 2 3]
results in
18

polynomial

pos Name pos 
ZAHL

sel X pos < 10 position

pos- Name pos- 
ZAHL

sel X pos- > 5 position from behind



136

Operation 
symbol

Notation: 
Input Result 

type

Examples Meaning

pred Name pred 
term

X:=100 next X pred *1.03 predecessor

proj tbt NAMES ->
tbt  

<TABH!
X,Ym m
1 2 3
4 5
!TABH>
proj Y
results in (.tabh)
Ym m
5
2 3

omitting columns

proj- tbt
proj- NAMES 
 tbt

<TABH!
X,Ym m
1 2 3
4 5
!TABH>
proj- Y
results in (.tab)
Xm
1
4

omitting columns

pzahl tbt pzahl  
PZAHL

1/5 6 9.7 pzahl
results in (.tabh)
0.2 6. 9.7

conversion to a PZAHL 
(float)

pzahl1de tbt pzahl1de 
PZAHL

"Today I get 356,88 
euros and not 66.8 ." 
pzahl1de
results in
356.88

first German “Comma 
number” of a text

rat ZAHL rat 
ZAHL RATIO

<TAB!
X,Yl l
1 2
  3
TAB>
Z:= X rat Y
results in
X,(Y, Z l) l 
1  2  1/2
   3  1/3

conversion of two 
integers into one 
RATIO number

ratio num ratio 
RATIO

1/5 6 9.7 ratio
results in (.tabh)
1/5 6/1 97/10

conversion to rational 
number

rename tbt rename X!Y renaming column names



137

Operation 
symbol

Notation: 
Input Result 

type

Examples Meaning

rename 
Name1 ! 
name2 tbt'

rest ZAHL rest 
ZAHL ZAHL 

13 rest 5
results in
3

remainder of integer 
division

rnd PZAHL rnd 
ZAHL PZAHL

17.678 3.45 zz 8 rnd 1 
results in
17.7 3.5 zz 8 

round

route tbt route 
tbt

<TAB!
X,Y m
0 0 
1 1 
0 1
!TAB>
route
generates 2 lines from 
(0,0) to (1,1) and from
(1,1) to (0,1)

generate a 
straightline sequence 
from point sequence

satzl TEXT satzl 
TEXTl

"It's great. Great. 
Tomorrow we celebrate."
satzl
results in (.tabh)
SATZl
It's great.
Great.
Tomorrow we celebrate.

list of sentences

seg Name seg 
term

grandson.tabh
sel Oehna in NAME seg
or
X seg ++:
average of all numbers 
of the segments, 
containing X 

segment

sel tbt1
sel cond
 tbt

rivers.tabh
sel LENGTH >800

selection 

sel- tbt1
sel- cond
 tbt

sel- LOC=Magdeburg
sel- Magdeburg
sel-: without the 
specified struples

selection

sepl constant 
list, useful 
for an 
additional 

"."  ";" "," "|" "!" "?" 
"(" ")" "@" "#" "\n" "-" 
" "

all separators useful 
in cut operations



138

Operation 
symbol

Notation: 
Input Result 

type

Examples Meaning

cut 
operations

si si  BOOL si & no 
results in 
no

truth value true 
(answer yes (=si))

sin PZAHL sin  
PZAHL

3.14159 sin
results in 
2.65358979335e-06

sine function

sqrt num sqrt 
PZAHL

4 sqrt
results in
2.

square root

mad
streu

tbt mad  
PZAHL

[1 2 5 3 5 1] mad
results in
1.5

scattering

subtext text subtext 
ZAHL ! ZAHL 
TEXT

aBCdE subtext 2 ! 3
results in 
BCd 

subtext (substring)

subtext2 text subtext2 
text ! text 
TEXT

aBCdEfgh subtext2 "B"!fg
results in CdE

partial text of the 
first text that lies 
between the other two 
given texts.

succ Name succ 
term

MARKl:= 3 1 2 1
sel MARK >MARK succ
results in
MARKl
3 2

Successor

tag tbt tag NAME!
scheme 
 tbt'

LOCATION:=Magdeburg
STREET:=Beims
tag ADDRESS!
LOCATION,STREET
results (metadata)
TABMENT ! ADDRESS
ADDRESS ! 
LOCATION,STREET
LOCATION ! WORT
STREET ! WORT

enclose data of a 
schema with a tag 

tag0 tbt tag0 
name tbt'

11 13 tag0 XX
results (ment)
<XX>
11
13
</XX>

put a tag around the 
entire tabment 

tan num tan 
PZAHL

3.14 tan
results in
-0.00159265493641

tangent function



139

Operation 
symbol

Notation: 
Input Result 

type

Examples Meaning

text mixe text 
TEXT

3.14 ttt 8 
text
results in
TEXTl
3.14 ttt 8

transform any 
elementary type to 
TEXT.

textend tbt textend 
ZAHL TEXT

asdfgh text end 4
results fgh
abcde textend -2
results in 
de

subtext counted from 
back 

textindex text 
textindex 
text ZAHL

"Today is Tuesday."
textindex Tu
results in
ZAHL
10

Position

time time PZAHL time
results in:
1.557021
(for example)

system time (only the 
difference between two 
such times is 
significant for 
efficiency 
considerations)

total tbt total 
aggs -> tbt

facs.tab
total ++,++:
results in (.tab)
FAC  ,DEAN   ,BUDGET ,  
               STUDCAPACITY l
Art   Sitte    2000    600
Infor Reichel 10000    500
Math  Dassow   1000    200
Philo Hegel    1000     10
Sport Streich  8000    150
sum   sum     22000   1460
avg   avg     4400.   292.

One or more 
aggregations at the 
end of each collection

trim text trim 
text

" Hi o++o " trim
Results in (ment)
<TABM>Hi o++o</TABM>

remove spaces at the 
back and front

tup NAME tup 
tupel

grandson.tabh
sel German in NAME tup

a whole tuple

untag0 tbt untag0 
tbt'

X:=1
untag0
results in
ZAHL
1

remove the outermost 
tag

uppercase text 
uppercase 
text

1.2,aW uppercase
results in (.tab)
PZAHL,WORT 
1.2   AW 

convert to uppercase



140

Operation 
symbol

Notation: 
Input Result 

type

Examples Meaning

variance tbt variance 
PZAHL

[1 2 4 6] variance
results in
4.91666666667

variance

vlists tbt vlists 
ZAHL tbt l 

variable-length lists; 
the operation 
generates the same as 
"lists" except that all 
shorter lists also 
appear in the result.

variable length lists

wort tbt wort 
wort 

"I'm good.So are you."
wort
results in
WORT
I_am_good.You_too.

convert to words

zahl num zahl 
ZAHL

"12" zahl
results in
12

3.14 zahl
results in
3

Conversion into 
integers

zahltrip text zahltrip 
-> Triples of 
nums

DAY,MON,YEAR:=
    26.03.1963 zahltrip
results in
DAY,MON,YEAR
26  3   1963

the first 3 numbers of 
a text

zahlratio RATIO 
zahlratio -> 
ZAHL,RATIO

33/7 zahlratio 
results in
4 5/7

convert to integer 
part and real fraction

zahl1de text zahl1de 
 ZAHL

"Today I get 66,356 11 
euros" 
zahl1de 
results in
66

extract first integer 
from a German text



Appendix B: List of o++o color names

"aliceblue",(0.941176470588,0.972549019608,1.);
"antiquewhite",(0.980392156863,0.921568627451,0.843137254902);
"aquamarine",(0.498039215686,1.,0.83137254902);
"azure",(0.941176470588,1.,1.);
"beige",(0.960784313725,0.960784313725,0.862745098039);
"bisque",(1.,0.894117647059,0.76862745098);
"black",(0.,0.,0.);
"blanchedalmond",(1.,0.921568627451,0.803921568627);
"blue",(0.,0.,1.);
"blueviolet",(0.541176470588,0.16862745098,0.886274509804);
"brown",(0.647058823529,0.164705882353,0.164705882353);
"burlywood",(0.870588235294,0.721568627451,0.529411764706);
"cadetblue",(0.372549019608,0.619607843137,0.627450980392);
"chartreuse",(0.498039215686,1.,0.);
"chocolate",(0.823529411765,0.411764705882,0.117647058824);
"coral",(1.,0.498039215686,0.313725490196);
"cornflowerblue",(0.392156862745,0.58431372549,0.929411764706);
"cornsilk",(1.,0.972549019608,0.862745098039);
"cyan",(0.,1.,1.);
"darkgoldenrod",(0.721568627451,0.525490196078,0.043137254902);
"darkgreen",(0.,0.392156862745,0.);
"darkkhaki",(0.741176470588,0.717647058824,0.419607843137);
"darkolivegreen",(0.333333333333,0.419607843137,0.18431372549);
"darkorange",(1.,0.549019607843,0.);
"darkorchid",(0.6,0.196078431373,0.8);
"darkred",(0.5450,0.,0.);
"darksalmon",(0.913725490196,0.588235294118,0.478431372549);
"darkseagreen",(0.560784313725,0.737254901961,0.560784313725);
"darkslateblue",(0.282352941176,0.239215686275,0.545098039216);
"darkslategray",(0.18431372549,0.309803921569,0.309803921569);
"darkturquoise",(0.,0.807843137255,0.819607843137);
"darkviole",(0.580392156863,0.,0.827450980392);
"deeppink",(1.,0.078431372549,0.576470588235);
"deepskyblue",(0.,0.749019607843,1.);
"dimgrey",(0.411764705882,0.411764705882,0.411764705882);
"dodgerblue",(0.117647058824,0.564705882353,1.);
"firebrick",(0.698039215686,0.133333333333,0.133333333333);
"floralwhite",(1.,0.980392156863,0.941176470588);
"forestgreen",(0.133333333333,0.545098039216,0.133333333333);
"gainsboro",(0.862745098039,0.862745098039,0.862745098039);
"ghostwhite",(0.972549019608,0.972549019608,1.);
"gold",(1.,0.843137254902,0.);
"goldenrod",(0.854901960784,0.647058823529,0.125490196078);
"green",(0.,1.,0.);
"greenyellow",(0.678431372549,1.,0.18431372549);
"grey",(0.745098039216,0.745098039216,0.745098039216);
"honeydew",(0.941176470588,1.,0.941176470588);

141



"hotpink",(1.,0.411764705882,0.705882352941);
"indianred",(0.803921568627,0.360784313725,0.360784313725);
"ivory",(1.,1.,0.941176470588);
"lavender",(0.901960784314,0.901960784314,0.980392156863);
"lavenderblush",(1.,0.941176470588,0.960784313725);
"lawngreen",(0.486274509804,0.988235294118,0.);
"lemonchiffon",(1.,0.980392156863,0.803921568627);
"lightblue",(0.678431372549,0.847058823529,0.901960784314);
"lightcoral",(0.941176470588,0.501960784314,0.501960784314);
"lightcyan",(0.878431372549,1.,1.);
"lightgoldenrod",(0.933333333333,0.866666666667,0.509803921569);
"lightgray",(0.827450980392,0.827450980392,0.827450980392);
"lightpink",(1.,0.713725490196,0.756862745098);
"lightsalmon",(1.,0.627450980392,0.478431372549);
"lightseagreen",(0.125490196078,0.698039215686,0.666666666667);
"lightskyblue",(0.529411764706,0.807843137255,0.980392156863);
"lightslateblue",(0.517647058824,0.439215686275,1.);
"lightslategray",(0.466666666667,0.533333333333,0.6);
"lightsteelblue",(0.690196078431,0.76862745098,0.870588235294);
"lightyellow",(1.,1.,0.878431372549);
"limegreen",(0.196078431373,0.803921568627,0.196078431373);
"linen",(0.980392156863,0.941176470588,0.901960784314);
"ltgoldenrodyello",(0.980392156863,0.980392156863,0.823529411765);
"magenta",(1.,0.,1.);
"maroon",(0.690196078431,0.188235294118,0.376470588235);
"mediumaquamarine",(0.4,0.803921568627,0.666666666667);
"mediumblue",(0.,0.,0.803921568627);
"mediumorchid",(0.729411764706,0.333333333333,0.827450980392);
"mediumpurple",(0.576470588235,0.439215686275,0.858823529412);
"mediumseagreen",(0.235294117647,0.701960784314,0.443137254902);
"mediumslateblue",(0.482352941176,0.407843137255,0.933333333333);
"mediumturquoise",(0.282352941176,0.819607843137,0.8);
"mediumvioletred",(0.780392156863,0.0823529411765,0.521568627451);
"medspringgreen",(0.,0.980392156863,0.603921568627);
"midnightblue",(0.0980392156863,0.0980392156863,0.439215686275);
"mintcream",(0.960784313725,1.,0.980392156863);
"mistyrose",(1.,0.894117647059,0.882352941176);
"moccasin",(1.,0.894117647059,0.709803921569);
"navajowhite",(1.,0.870588235294,0.678431372549);
"navyblue",(0.,0.,0.501960784314);
"oldlace",(0.992156862745,0.960784313725,0.901960784314);
"olivedrab",(0.419607843137,0.556862745098,0.137254901961);
"orange",(1.,0.647058823529,0.);
"orangered",(1.,0.270588235294,0.);
"orchid",(0.854901960784,0.439215686275,0.839215686275);
"palegoldenrod",(0.933333333333,0.909803921569,0.666666666667);
"palegreen",(0.596078431373,0.98431372549,0.596078431373);
"paleturquoise",(0.686274509804,0.933333333333,0.933333333333);
"palevioletred",(0.858823529412,0.439215686275,0.576470588235);
"papayawhip",(1.,0.937254901961,0.835294117647);
"peachpuff",(1.,0.854901960784,0.725490196078);
"peru",(0.803921568627,0.521568627451,0.247058823529);
"pink",(1.,0.752941176471,0.796078431373);

142



"plum",(0.866666666667,0.627450980392,0.866666666667);
"powderblue",(0.690196078431,0.878431372549,0.901960784314);
"purple",(0.627450980392,0.125490196078,0.941176470588);
"red",(1.,0.,0.);
"rosybrown",(0.737254901961,0.560784313725,0.560784313725);
"royalblue",(0.254901960784,0.411764705882,0.882352941176);
"saddlebrown",(0.545098039216,0.270588235294,0.0745098039216);
"salmon",(0.980392156863,0.501960784314,0.447058823529);
"sandybrown",(0.956862745098,0.643137254902,0.376470588235);
"seagreen",(0.180392156863,0.545098039216,0.341176470588);
"seashell",(1.,0.960784313725,0.933333333333);
"sienna",(0.627450980392,0.321568627451,0.176470588235);
"silver",(0.898039215686, 0.898039215686, 0.898039215686);
"skyblue",(0.529411764706,0.807843137255,0.921568627451);
"slateblue",(0.41568627451,0.352941176471,0.803921568627);
"slategrey",(0.439215686275,0.501960784314,0.564705882353);
"snow",(1.,0.980392156863,0.980392156863);
"springgreen",(0.,1.,0.498039215686);
"steelblue",(0.274509803922,0.509803921569,0.705882352941);
"tan",(0.823529411765,0.705882352941,0.549019607843);
"thistle",(0.847058823529,0.749019607843,0.847058823529);
"tomato",(1.,0.388235294118,0.278431372549);
"turquoise",(0.250980392157,0.878431372549,0.81568627451);
"violet",(0.933333333333,0.509803921569,0.933333333333);
"violetred",(0.81568627451,0.125490196078,0.564705882353);
"wheat",(0.960784313725,0.870588235294,0.701960784314);
"white",(1.,1.,1.);
"whitesmoke",(0.960784313725,0.960784313725,0.960784313725);
"yellow",(1.,1.,0.);
"yellowgreen",(0.603921568627,0.803921568627,0.196078431373)

143


	1 Calculations and spreadsheet applications with o++o
	2 A savings bank account
	3 Table Recursion - Exponential Growth
	4 Hello otto - gimmick
	5 o++o for kindergarten?
	5.1 Stroke Lists
	5.2 The conversion operations stroke list to zahl and vice versa
	5.3 The operations + *
	5.4 o++o programs to kindergarten?

	6 o++o in School Lessons
	7 Multiplication, School and Digitization
	7.1 Who can multiply in their head?
	7.2 Who can multiply in writing?
	7.3 Who can program the multiplication?
	7.4 Stroke list multiplication versus decimal multiplication
	7.5 How o++o could enrich the school curriculum?
	7.6 Can the stroke list operation be taught as early as third grade?
	7.7 Does the school calculator from Texas-Instruments calculate wrong?
	7.8 Is EXCEL morally worn out?
	7.9 o++o Proofs
	7.10 An example of deep digitization

	8 Schemes and Structured Tables
	9 Tabment types (TTs) and structured documents
	10 A university database
	10.1 Selection (sel sel-)
	10.2 Calculations (:=)
	10.3 Restructuring (gib)
	10.4 Joining by nested queries
	10.5 A user-friendly “join” (ext ext2)

	11 Special Restructuring Operations
	11.1 The Bill of Material Problem (BOM) (onrs)
	11.2 Transposing Matrices and structured Tables

	12 Some operations for text processing with o++o (+ -+ cut satzl)
	13 Format with o++o ('3 '4 norm3e norm3m mant rnd)
	14 Structured diagrams
	15 Multiple diagrams
	16 Image generation
	Appendix A: List of operations and keywords of o++o
	Appendix B: List of o++o color names

